• 论文 • 上一篇    下一篇

三级四阶显式辛R-K-N格式的完全构造

徐松(1), 侯晓荣(2)   

  1. (1)电子科技大学自动化工程学院, 成都 610054;宁波大学理学院, 宁波 315211;(2)电子科技大学自动化工程学院, 成都 610054.
  • 收稿日期:2009-05-31 修回日期:1900-01-01 出版日期:2009-09-25 发布日期:2009-09-25

徐松;侯晓荣. 三级四阶显式辛R-K-N格式的完全构造[J]. 系统科学与数学, 2009, 29(9): 1211-1221.

XU Song;HOU Xiaorong. The Complete Construction of Fourth Order Symplectic Explicit R-K-N Methods of Three Stages[J]. Journal of Systems Science and Mathematical Sciences, 2009, 29(9): 1211-1221.

The Complete Construction of Fourth Order Symplectic Explicit R-K-N Methods of Three Stages

XU Song(1), HOU Xiaorong(2)   

  1. (1)College of Automation, University of Electronic Science and Technology of China Chengdu 610054;Department of Mathematics, Ningbo University,Ningbo 315211;(2)College of Automation, University of Electronic Science and Technology of China, Chengdu 610054.
  • Received:2009-05-31 Revised:1900-01-01 Online:2009-09-25 Published:2009-09-25
s级p阶辛Runge-Kutta-Nystr\"om(R-K-N)方法的一种充要条件是用关于参数的非线性方程组来表示的,辛R-K-N格式的构造问题因而转化为该方程组的求解问题. 在一些特殊的限定条件下, 已有该方程组在s=3,p=4时的两组解,即得到了两个三级四阶显式辛格式. 对于s=3,p=4情形,基于吴方法,利用计算机代数系统Maple及软件包wsolve给出了对应的非线性方程组的全部解, 这样就构造了所有的三级四阶显式辛R-K-N格式, 并证明了三级四阶显式辛R-K-N方法所满足的
条件方程有冗余. 数值实验结果显示出新的辛格式在一定的条件下有着较好的误差精度.
The sufficient and necessary conditions for a $p$-th order symmetric Runge-Kutta-Nystr\"om (R-K-N) method of s stages were expressed by a system of nonlinear equations. Thus the construction problem of symmetric schemes
is transformed into the problem of solving the system. Under some special conditions, two solutions of the system for s=3 and p=4 were presented, so two fourth order symmetric explicit schemes of three stages were given. Based on Wu's method, we obtain all the solutions of the system for s=3 and p=4 by using Maple software and the software package wsolve in this paper, that is, we construct all the fourth order symplectic explicit R-K-N schemes of three stages. Moreover, we prove that the conditions for a fourth order symmetric explicit R-K-N method of three stages are redundant. Numerical results on the two-body problem indicate the higher precision of the new schemes compared to some existing schemes.

MR(2010)主题分类: 

()
[1] 李颖麟;夏壁灿;张志海. 零维多项式系统保持重数的零点分解[J]. 系统科学与数学, 2010, 30(11): 1491-1500.
[2] 特木尔朝鲁;张智勇. 一类非线性波动方程的势对称分类[J]. 系统科学与数学, 2009, 29(3): 389-411.
[3] 赵林;吴尽昭. 基于吴方法的多值模型检验[J]. 系统科学与数学, 2008, 28(8): 1020-1029.
[4] 张智勇;雍雪林;陈玉福. 一类组合方程的势对称分类[J]. 系统科学与数学, 2008, 28(8): 905-914.
阅读次数
全文


摘要