一类二阶线性脉冲微分方程解的渐近性态

田艳玲;翁佩萱

系统科学与数学 ›› 2006, Vol. 26 ›› Issue (1) : 69-082.

PDF(325 KB)
PDF(325 KB)
系统科学与数学 ›› 2006, Vol. 26 ›› Issue (1) : 69-082. DOI: 10.12341/jssms08715
论文

一类二阶线性脉冲微分方程解的渐近性态

    田艳玲, 翁佩萱
作者信息 +

Asymptotical Behavior for a Second Order Linear Ordinary DifferentialEquation with Impulses

    Tian Yanling, Weng Peixuan
Author information +
文章历史 +

摘要

研究一类二阶线性脉冲微分方程
(r(t)u)=n=1anδ(ttn)u(t)
解的结构和解的渐近性态, 其中
δ(t)δ-函数,
且对n\boldmath{N}an>0, r(t)>0[t0,+)
上的连续函数,
0t0<t1<<tn< (tn+n).

Abstract

The structure and asymptotical behavior of solutions for a second
order linear ordinary differential equation with impulses
(r(t)u)=n=1anδ(ttn)u(t)
are investigated, where δ(t) is the Dirac δ-function, and 0t0<t1<<tn< (tn+ as n),
an>0 for n\boldmath{N}, and r(t)>0 is a continuous function on
[t0,+)

关键词

线性脉冲微分方程 / / 渐近性态

Key words

Linear ordinary differential equation with impulses / solutions / asymptotical behaviors.

引用本文

导出引用
田艳玲 , 翁佩萱. 一类二阶线性脉冲微分方程解的渐近性态. 系统科学与数学, 2006, 26(1): 69-082. https://doi.org/10.12341/jssms08715
Tian Yanling , Weng Peixuan. Asymptotical Behavior for a Second Order Linear Ordinary DifferentialEquation with Impulses. Journal of Systems Science and Mathematical Sciences, 2006, 26(1): 69-082 https://doi.org/10.12341/jssms08715
中图分类号: 34A37    34A30   
PDF(325 KB)

157

Accesses

0

Citation

Detail

段落导航
相关文章

/