至多一个变点的Γ分布的统计推断及在金融中的应用

谭常春;赵林城;缪柏其

系统科学与数学 ›› 2007, Vol. 27 ›› Issue (1) : 2-10.

PDF(450 KB)
PDF(450 KB)
系统科学与数学 ›› 2007, Vol. 27 ›› Issue (1) : 2-10. DOI: 10.12341/jssms08743
论文

至多一个变点的Γ分布的统计推断及在金融中的应用

    谭常春,赵林城,缪柏其
作者信息 +

INFERENCE AND APPLICATION IN FINANCE OF Γ-DISTRIBUTION WITH AT MOST ONE CHANGE-POINT

    Tan Changchun,Zhao Lincheng,Miao Baiqi

Author information +
文章历史 +

摘要

对至多一个变点的Γ分布,即X1,X2,Xn 为一列相互独立的随机变量序列,且X1,X2,,X[nτ0] i.i.d $sim {\it \Gamma}(x;\nu_{1}, \lambda_{1}), X_{[n\tau_{0}]+1}, X_{[n\tau_{0}]+2}, \cdots \ ,X_{n}\ \ {\rm i.i.d}\sim {\it \Gamma}(x;\nu_{2}, \lambda_{2}),其中\tau_{0}未知,称\tau_{0}为该序列的变点.在利用第一型极值分布逼近文中提出统计量的分布的基础上,给出了变点\tau_{0}估计\widehat{\tau}$的相合性及强弱收敛速度.最后给出了在金融序列上的应用.

Abstract

In this paper the change point of parameter in Γ- distribution is considered. Suppose that X1,X2,,X[nτ0],X[nτ0]+1,,Xn are independent random variables where X1,X2,,X[nτ0] i.i.d Γ(x;ν1,λ1),
and X[nτ0]+1,X[nτ0]+2,,Xn i.i.dΓ(x;ν2,λ2), τ0 is unknown and called change point. The distribution of the statistic proposed in the paper can be approximated by the first type of extremal distribution . Under mild conditions, the strong consistency and rate of convergence of the estimator for the change point
are presented. At the same time, its application are also presented.

关键词

Γ分布 / 变点 / 强相合估计 / 收敛速度

Key words

Γ-distribution / change point / strong consistency / rate of convergence

引用本文

导出引用
谭常春 , 赵林城 , 缪柏其. 至多一个变点的Γ分布的统计推断及在金融中的应用. 系统科学与数学, 2007, 27(1): 2-10. https://doi.org/10.12341/jssms08743
Tan Changchun , Zhao Lincheng , Miao Baiqi. INFERENCE AND APPLICATION IN FINANCE OF Γ-DISTRIBUTION WITH AT MOST ONE CHANGE-POINT. Journal of Systems Science and Mathematical Sciences, 2007, 27(1): 2-10 https://doi.org/10.12341/jssms08743
中图分类号: 62F12    62G20   
PDF(450 KB)

191

Accesses

0

Citation

Detail

段落导航
相关文章

/