扰动集值优化问题超有效点集的次微分稳定性

侯震梅;周勇

系统科学与数学 ›› 2006, Vol. 26 ›› Issue (6) : 744-751.

PDF(318 KB)
PDF(318 KB)
系统科学与数学 ›› 2006, Vol. 26 ›› Issue (6) : 744-751. DOI: 10.12341/jssms08747
论文

扰动集值优化问题超有效点集的次微分稳定性

    侯震梅,周勇
作者信息 +

The stability of super efficient points of set-valued optimization problem with perturbation

    Hou Zhenmei,Zhou Yong
Author information +
文章历史 +

摘要

在锥序Banach向量空间引入了集值映射在超有效意下的次微分(次梯度);
在一定的条件下,证明次微分(次梯度)的存在性; 得到了序扰动、双扰动集值优化问题超有效点集在次微分意义下的稳定性.

Abstract

A kind of subdifferential (subgradient) of
set-valued mappings in ordered Banach vector spaces is introduced in the sense of super efficiency.
Under certain conditions, the existence of this subdifferential is proved and the stability of super
efficient points of set-valued optimization problems
with ordered
perturbation and biperturbation is obtained in the sense of
subdifferential.

关键词

集值优化 / 稳定性 / 次微分 / 超有效性 / 次梯度

Key words

Set-valued optimization / stability / subdifferential / super efficiency / subgradient

引用本文

导出引用
侯震梅 , 周勇. 扰动集值优化问题超有效点集的次微分稳定性. 系统科学与数学, 2006, 26(6): 744-751. https://doi.org/10.12341/jssms08747
Hou Zhenmei , Zhou Yong. The stability of super efficient points of set-valued optimization problem with perturbation. Journal of Systems Science and Mathematical Sciences, 2006, 26(6): 744-751 https://doi.org/10.12341/jssms08747
中图分类号: 93C20   
PDF(318 KB)

228

Accesses

0

Citation

Detail

段落导航
相关文章

/