鲁棒半监督ν-支持向量分类机

许洪贵;赵琨;田英杰

系统科学与数学 ›› 2010, Vol. 30 ›› Issue (2) : 265-273.

PDF(460 KB)
PDF(460 KB)
系统科学与数学 ›› 2010, Vol. 30 ›› Issue (2) : 265-273. DOI: 10.12341/jssms08940
论文

鲁棒半监督ν-支持向量分类机

    许洪贵, 赵琨, 田英杰
作者信息 +

Robust Semi-supervised ν-Support Vector Machines

    XU Honggui, ZHAO Kun, TIAN Yingjie
Author information +
文章历史 +

摘要

支持向量机在近十年成为机器学习的主要学习技术,而且已经成功应用到有监督学习问题中.
Fung和Mangasarian利用支持向量机对于既有已标类别样本又有未知类别样本的训练集进行训练,方法主要是利用少量已标明类别的样本进行训练得到一个分类器的同时对于未标明类别的样本进行分类,使得间隔最大化.此优化问题中假定样本是精确的,而在现实生活中,样本通常带有统计误差.因此,考虑样本带有扰动信息的半监督两类分类问题,给出鲁棒半监督ν-支持向量分类算法.该算法的参数ν易于选择,而数值试验也表明该算法具有良好的稳定性和较好的分类结果.

Abstract

Support Vector Machines have been a dominant learning technique for almost ten years, moreover they have been applied to supervised learning problems. To use the support vector method, assume that training data in the optimization problems are known exactly. But in fact, the training data are usually subject
to measurement noise. In this paper, a robust semi-supervised classification algorithm based on linear ν-Support Vector Machines is presented. Numerical simulation shows the robustness of the proposed method.

关键词

支持向量机 / 二阶锥规划 / 半监督学习 / 鲁棒.

Key words

Support vector machines / second order cone programming / semi-supervised learning / robust.

引用本文

导出引用
许洪贵 , 赵琨 , 田英杰. 鲁棒半监督ν-支持向量分类机. 系统科学与数学, 2010, 30(2): 265-273. https://doi.org/10.12341/jssms08940
XU Honggui , ZHAO Kun , TIAN Yingjie. Robust Semi-supervised ν-Support Vector Machines. Journal of Systems Science and Mathematical Sciences, 2010, 30(2): 265-273 https://doi.org/10.12341/jssms08940
中图分类号: 65K05   
PDF(460 KB)

198

Accesses

0

Citation

Detail

段落导航
相关文章

/