基于多重工作休假的成批到达离散时间排队的性能分析

徐秀丽;刘春平;曹学云;李沛

系统科学与数学 ›› 2010, Vol. 30 ›› Issue (7) : 947-957.

PDF(512 KB)
PDF(512 KB)
系统科学与数学 ›› 2010, Vol. 30 ›› Issue (7) : 947-957. DOI: 10.12341/jssms09010
论文

基于多重工作休假的成批到达离散时间排队的性能分析

    徐秀丽, 刘春平, 曹学云, 李沛
作者信息 +

Analysis Based on Discrete Time Bulk Input Queue with Multiple Working Vacations

    XU Xiuli, LIU Chunping, CAO Xueyun, LI Pei
Author information +
文章历史 +

摘要

研究了一个成批到达的离散时间 Geom[X]/Geom/1 多重工作休假排队. 首先,建立了模型的二维马尔可夫链,利用矩阵分析的方法, 导出了稳态队长复杂的概率母函数. 其次, 为了展示
此模型与经典无休假Geom[X]/Geom/1排队的联系, 给出稳态队长的随机分解结果. 尤其重要的是,发现了条件负二项分布的双参数加法定理, 利用这些结论,得到了矩母函数序下的稳态等待时间的上下界. 进一步,求出了平均队长和平均等待时间的上下界. 最后,提出一些数值例子以验证结论.

Abstract

This paper is concerned with a bulk input Geom[X]/Geom/1 queue with multiple working vacations. Firstly a two-dimensional Markov chain model is established, and with the matrix analysis method, highly complicated PGF of the
stationary queue size is derived, from which the stochastic decomposition
result for the PGF of the stationary queue size is obtained, which indicates the evident relationship with that of the classical Geom[X]/Geom/1 queue without vacation. The biparameter addition theorems for the conditional negative binomial distribution is established, with which the upper bound and the lower bound of the stationary waiting time is given in the moment generating function order. Furthermore, the mean queue size, the upper bound and the lower bound of the mean waiting time are obtained. Finally, some numerical examples are presented.

关键词

Geom[X]/Geom/1排队 / 成批到达 / 多重工作休假 / 随机分解 / 矩母函数序.

Key words

Geom[X]/Geom/1 queue / bulk input / multiple working vacations / stochastic decomposition / the moment generating function order.

引用本文

导出引用
徐秀丽 , 刘春平 , 曹学云 , 李沛. 基于多重工作休假的成批到达离散时间排队的性能分析. 系统科学与数学, 2010, 30(7): 947-957. https://doi.org/10.12341/jssms09010
XU Xiuli , LIU Chunping , CAO Xueyun , LI Pei. Analysis Based on Discrete Time Bulk Input Queue with Multiple Working Vacations. Journal of Systems Science and Mathematical Sciences, 2010, 30(7): 947-957 https://doi.org/10.12341/jssms09010
中图分类号: 60K25   
PDF(512 KB)

200

Accesses

0

Citation

Detail

段落导航
相关文章

/