Banach空间中非线性混合型微分积分方程的可解性

刘立山;孙经先

系统科学与数学 ›› 1996, Vol. 16 ›› Issue (3) : 253-241.

PDF(291 KB)
PDF(291 KB)
系统科学与数学 ›› 1996, Vol. 16 ›› Issue (3) : 253-241. DOI: 10.12341/jssms09202
论文

Banach空间中非线性混合型微分积分方程的可解性

    刘立山(1);孙经先(2)
作者信息 +

THE SOLVABILITY OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SACES

    Liu Lishan(1);Sun Jingxian(2)
Author information +
文章历史 +

摘要

在序Bananch空间中,研究了非线性混合型微分积分方程初值问题解的存在性,改进了文[1]中的相应结果.

Abstract

in this paper,we study the existence of solutions of the initial value problem for nonlinear integro-differential equations of mixed type in Banach spaces.We obtain the existence theorem which improves on the related result in [1].

关键词

混合型微分积分方程 / 解的存在性 / 非紧性测度

Key words

Integro-differential equations of mixed type / existence of solutions / measure of noncompactness / Ban

引用本文

导出引用
刘立山 , 孙经先. Banach空间中非线性混合型微分积分方程的可解性. 系统科学与数学, 1996, 16(3): 253-241. https://doi.org/10.12341/jssms09202
Liu Lishan , Sun Jingxian. THE SOLVABILITY OF NONLINEAR INTEGRO-DIFFERENTIAL EQUATIONS OF MIXED TYPE IN BANACH SACES. Journal of Systems Science and Mathematical Sciences, 1996, 16(3): 253-241 https://doi.org/10.12341/jssms09202
PDF(291 KB)

187

Accesses

0

Citation

Detail

段落导航
相关文章

/