ON THE TRANSMISSION ZEROS AND STRUCTURALLY STABLE PROPERTIES WITHOUT STEADY ERRORS OF LINEAR MULTIVARIABLE TIME-INVARIANT SYSTEMS
WANG ENPING WANG CHAOZHU
Author information+
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
{{custom_bio.content}}
{{custom_bio.content}}
{{custom_authorNodes}}
Collapse
文章历史+
收稿日期
修回日期
出版日期
1900-01-01
1900-01-01
1982-07-25
发布日期
1982-07-25
摘要
文献[1—4]详细研究了多变量定常线性系统的无静差和结构无静差性质,得到了内模原理的频域形式.为了说明内模原理的实质,本文讨论了无静差和结构无静差系统的传输零点的作用.本文所得结果告诉我们,多变量定常线性系统的无静差或结构无静差性质,是由闭环系统的零点与外部输入信号的极点之间的零极相消来保证的.本文使用与参考文献[1,2]相同的符号与术语.我们先对“结构稳定”的概念给一个确切的定义.如果一个多变量定常线性系统具有某种性质 π,并且在该系统的某个标称参数点 P 处存在某个邻域 U,使得这个系统在邻域
Abstract
This paper shows that the transmission zeros play an important role in a system withoutsteady errors and with structurally stable properties without steady errors.From the point ofview of the frequency domain,all our discussions are based on the Smith-McMillan form oflinear multivariable systems.The engineering sense of the“internal model principle”is revealedthrough the study of transmission zeros of the systems.The main results demonstrate that alinear multivariable time-invariant system possesses structurally stable properties without steadyerrors iff every numerator polynomialε_i(s)(i=1,2,…,min(r,m))of Smith-McMillanform of the closed loop transfer function matrix from f(s)to e(s)can be divided by α_1(s),the greatest invariant factor of N(S).The property thatε_i(s)can be divided by α_1(s)isstructurally stable.
WANG ENPING WANG CHAOZHU. , {{custom_author.name_en}}.
ON THE TRANSMISSION ZEROS AND STRUCTURALLY STABLE PROPERTIES WITHOUT STEADY ERRORS OF LINEAR MULTIVARIABLE TIME-INVARIANT SYSTEMS. Journal of Systems Science and Mathematical Sciences, 1982, 2(3): 196-206 https://doi.org/10.12341/jssms09340