• 论文 • 上一篇    下一篇

收益共享的寄售契约下供应商生产成本谎报行为分析

李丹(1), 唐加福(2), 藏洁(2)   

  1. (1)沈阳大学工商管理学院, 沈阳 110004;(2)东北大学流程工业综合自动化教育部重点实验室, 沈阳 110004
  • 收稿日期:2009-07-20 修回日期:2010-09-10 出版日期:2011-01-25 发布日期:2011-01-25

李丹;唐加福;藏洁. 收益共享的寄售契约下供应商生产成本谎报行为分析[J]. 系统科学与数学, 2011, 31(1): 13-020.

LI Dan;TANG Jiafu;ZANG Jie. Analysis of Manufacturing Cost Misreporting Behavior of Manufacturer Under Consignment Contract with Revenue Sharing[J]. Journal of Systems Science and Mathematical Sciences, 2011, 31(1): 13-020.

Analysis of Manufacturing Cost Misreporting Behavior of Manufacturer Under Consignment Contract with Revenue Sharing

LI Dan(1), TANG Jiafu(2), ZANG Jie(2)   

  1. (1)School of Business Administration, Shenyang University, Shenyang 110004;(2)Key Laboratory of Integrated Automation of Process Industry, Northeastern University, Shenyang 110004
  • Received:2009-07-20 Revised:2010-09-10 Online:2011-01-25 Published:2011-01-25
在收益共享寄售契约下的两级供应链中, 供应商向零售商报告其生产成本;零售商根据供应商报告的生产成本, 决定零售商的收益分配比例;供应商决定零售价格和生产数量, 并且保持产品的所有权.由于信息不对称, 供应商可能谎报其生产成本.作者应用博弈论分析了供应商谎报行为对供应链及其成员决策及绩效的影响.利用解析的方法得出一些理论结果:零售价格在信息对称时小于生产成本信息不对称时;订货数量在信息对称时大于生产成本信息不对称时;零售商的利润分配比例在信息对称时大于生产成本信息不对称时.供应商的谎报行为使其自身利润增加, 使零售商和供应链的利润减少.
The two-echelon supply chain under stochastic manufacturing demand has
a single component supplier selling to a single manufacturer. The model with perpetual manufacturing demand and many replenishment opportunities is considered by analytic method. The problem can be modeled as a supplier-led Stackelberg dynamic game. Supply chain performances under consignment and non-consignment are considered respectively. The supplier, acting as a designer
of supply chain, offers the manufacturer a backorder penalty cost share allocation, and then the manufacturer decides the optimal base stock level. In this paper the following conclusions are obtained. Under consignment, there is a unique equilibrium solution in the game, and the supply chain system is optimal. Under non-consignment, there is a unique equilibrium solution in the game, and the supply chain system is optimal. Supply chain performance under consignment is superior to that under non-consignment.

MR(2010)主题分类: 

()
[1] 陈胜利. 突发事件下零售商资金约束的风险规避型闭环供应链契约协调策略[J]. 系统科学与数学, 2020, 40(10): 1836-1865.
[2] 周义廷, 刘丽文. 考虑零售商公平关切的双渠道闭环供应链决策与协调研究[J]. 系统科学与数学, 2017, 37(9): 1930-1948.
[3] 周义廷,刘丽文. 考虑随机需求和搭便车行为的双渠道供应链决策模型[J]. 系统科学与数学, 2017, 37(1): 66-78.
[4] 刘丰军,邢伟,黄浩,裘江南. 基于套期保值的双寡头零售商供应链均衡策略分析[J]. 系统科学与数学, 2014, 34(2): 187-197.
[5] 何龙飞,吕海利,赵道致. 基于快速响应策略的需求关联复杂供应链动态产量联合优化[J]. 系统科学与数学, 2014, 34(1): 20-42.
[6] 胡凯,马士华. 具有众多小型供应商的品牌供应链中的食品安全问题研究[J]. 系统科学与数学, 2013, 33(8): 892-904.
[7] 林强,李苗. 保兑仓融资模式下收益共\契约的参数设计[J]. 系统科学与数学, 2013, 33(4): 430-444.
[8] 张智勇,石永强,刘承,杨磊. 考虑风险约束的混合渠道供应链协调机制研究[J]. 系统科学与数学, 2013, 33(2): 127-140.
[9] 屠惠远,华国伟,汪寿阳. 资金约束供应链中最优融资和生产决策研究[J]. 系统科学与数学, 2011, 31(11): 1412-1422.
[10] 马利军, 刘芳梅, 周威,赵映雪. 乘法需求模式下具有风险厌恶零售商的供应链合作博弈分析[J]. 系统科学与数学, 2011, 31(10): 1306-1316.
[11] 胡威, 王学武. 供应链中产品替代性对柔性资源的影响[J]. 系统科学与数学, 2011, 31(10): 1355-1362.
[12] 曹二保;赖明勇. 基于需求和生产成本偏差的Cournot竞争供应链协调[J]. 系统科学与数学, 2010, 30(10): 1313-1322.
阅读次数
全文


摘要