演化博弈与自组织合作

王龙;伏锋;陈小杰;楚天广;谢广明

系统科学与数学 ›› 2007, Vol. 27 ›› Issue (3) : 330-343.

PDF(1331 KB)
PDF(1331 KB)
系统科学与数学 ›› 2007, Vol. 27 ›› Issue (3) : 330-343. DOI: 10.12341/jssms09468
论文

演化博弈与自组织合作

    王龙, 伏锋, 陈小杰, 楚天广, 谢广明
作者信息 +

Evolutionary Games and Self-Organizing Cooperation

    Wang Long, Fu Feng, Chen Xiaojie, Chu Tianguang , Xie Guangming
Author information +
文章历史 +

摘要

主要研究复杂网络上的演化博弈.首先研究具有社团结构的无标度网络上的演化囚徒困境博弈及Newman-Watts小世界网络中异质性对合作演化的影响.然后考察了在不同合作者和作弊者初始分布配置情况下,不同的初始比例条件对合作水平的影响,且在社会网络上研究了雪堆博弈中的合作演化.进一步地,讨论了网络拓扑和博弈动力学的共同演化问题和网络上演化囚徒困境中的强化学习问题.最后给出了复杂网络上演化博弈论的未来发展方向与应用前景.

Abstract

Evolutionary games on complex networks are considered in this paper. First, the evolutionary Prisoner's dilemma game on scale-free networks with community structures is investigated. Then the heterogeneity's role in the evolution of cooperation on a variant of Newman-Watts small-world networks is explored. The influence of different initial conditions on the evolution of cooperation corresponding to different initial configurations for cooperators and defectors distributing among the vertices of networks is also studied. Moreover, Snowdrift game on an empirical social network is considered, and the entangled dynamics of the evolution of network structure and strategy is investigated. The reinforcement learning dynamics in networked populations playing Prisoner's dilemma is also explored. Finally, some open problems, future research directions, and possible application areas of evolutionary games on complex networks are presented.

关键词

群体行为 / 合作 / 演化博弈论 / 复杂网络 / 囚徒困境博弈 / 雪堆博弈 / 强化学习 / 自组织 / 拓扑 / 动力学.

Key words

Collective behaviors / cooperation / evolutionary games / complex networks / Prisoner's dilemma / Snowdrift game / reinforcement learning / self-organization / topology / dynamics.

引用本文

导出引用
王龙 , 伏锋 , 陈小杰 , 楚天广 , 谢广明. 演化博弈与自组织合作. 系统科学与数学, 2007, 27(3): 330-343. https://doi.org/10.12341/jssms09468
Wang Long , Fu Feng , Chen Xiaojie , Chu Tianguang , Xie Guangming. Evolutionary Games and Self-Organizing Cooperation. Journal of Systems Science and Mathematical Sciences, 2007, 27(3): 330-343 https://doi.org/10.12341/jssms09468
中图分类号: 91A22    91D30    91A43   
PDF(1331 KB)

Accesses

Citation

Detail

段落导航
相关文章

/