NA阵列加权乘积和的完全收敛性

成凤旸;王岳宝

系统科学与数学 ›› 2005, Vol. 25 ›› Issue (4) : 451-458.

PDF(303 KB)
PDF(303 KB)
系统科学与数学 ›› 2005, Vol. 25 ›› Issue (4) : 451-458. DOI: 10.12341/jssms09576
论文

NA阵列加权乘积和的完全收敛性

    成凤旸,王岳宝
作者信息 +

COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF NA RANDOM VARIABLES

    Cheng Fengyang, Wang Yuebao
Author information +
文章历史 +

摘要

{Xni:1in,n1}为行间NA阵列, g(x)R+上指数为α的正则变化函数,r>0, m为正整数, {ani:1in,n1}为满足条件max1in|ani|=O((g(n))1) 的实数阵列, 本文得到了使$\sum\limits_{n=1}^{\infty}n^{r-1}\Pr\big(\big| \sum\limits_{1\leq i_1< \cdots\epsilon\big) <\infty, \mbox{ }\forall\varepsilon>0$ 成立的条件, 推广并改进了Stout及王岳宝和苏淳等的结论.

Abstract

Let {Xni:1in,n1} be an array of rowwise NA random variables, and let g(x) be a regular function with index α. Let {ani:1in,n1} be an array of real numbers satisfying max1in|ani|=O((g(n))1). Let r>0, and let m be a positive integer. A set of sufficient conditions such that $\sum\limits_{n=1}^{\infty}n^{r-1} \Pr\Big(\Big|\sum\limits_{1\leq i_1<\cdots\varepsilon\Big)<\infty, \mbox{ }\forall\varepsilon>0$ are obtained. The well-known results by Stout and Wang are extended.

关键词

行间NA阵列 / 加权乘积和 / 完全收敛性 / 正则

Key words

Array of rowwise NA random variables / weighted procduct sum / complete convergence / regular varying f

引用本文

导出引用
成凤旸 , 王岳宝. NA阵列加权乘积和的完全收敛性. 系统科学与数学, 2005, 25(4): 451-458. https://doi.org/10.12341/jssms09576
Cheng Fengyang , Wang Yuebao. COMPLETE CONVERGENCE FOR WEIGHTED SUMS OF ARRAYS OF NA RANDOM VARIABLES. Journal of Systems Science and Mathematical Sciences, 2005, 25(4): 451-458 https://doi.org/10.12341/jssms09576
PDF(303 KB)

219

Accesses

0

Citation

Detail

段落导航
相关文章

/