立体阵的一般结构

张利军;程代展;李春文

系统科学与数学 ›› 2005, Vol. 25 ›› Issue (4) : 439-450.

PDF(358 KB)
PDF(358 KB)
系统科学与数学 ›› 2005, Vol. 25 ›› Issue (4) : 439-450. DOI: 10.12341/jssms09577
论文

立体阵的一般结构

    张利军(1),程代展(2),李春文(3)
作者信息 +

THE GENERAL STRUCTURE OF CUBIC MATRICES

    Zhang Lijun(1),Cheng Daizhan(2),Li Chunwen(3)
Author information +
文章历史 +

摘要

本文给出了立体阵的各种表示形式及立体阵乘法的各种定义,推导出其主要性质,说明立体阵的乘积在适当情况下 可转化成普通矩阵乘积. 然后讨论了立体阵的乘积与矩阵半张量积的关系, 并用矩阵半张量积统一了各种 立体阵的乘法运算. 最后以对策论为例说明它的应用.

Abstract

In this paper, all kinds of expressions and various definitions of products of cubic matrices are presented. Their properties are investigated. Consequently, we show that all products of cubic matrices can be converted into products of general matrices under certain appropriate conditions. Then the relationship between semi-tensor product of matrices and product of cubic matrices is studied. The semi-tensor product of matrices is used to unify the various products of cubic matrices. An example in game theory is implemented to illustrate the applications.

关键词

立体阵 / 矩阵的半张量积 / 高维矩阵 / 纳什均衡

Key words

Cubic matrix / semi-tensor product of matrices / multi-demensional matrix / Nash equilibrium

引用本文

导出引用
张利军 , 程代展 , 李春文. 立体阵的一般结构. 系统科学与数学, 2005, 25(4): 439-450. https://doi.org/10.12341/jssms09577
Zhang Lijun , Cheng Daizhan , Li Chunwen. THE GENERAL STRUCTURE OF CUBIC MATRICES. Journal of Systems Science and Mathematical Sciences, 2005, 25(4): 439-450 https://doi.org/10.12341/jssms09577
PDF(358 KB)

Accesses

Citation

Detail

段落导航
相关文章

/