次线性条件下奇异三阶微分方程周期边值问题解的全局结构

刘衍胜

系统科学与数学 ›› 2005, Vol. 25 ›› Issue (4) : 459-465.

PDF(265 KB)
PDF(265 KB)
系统科学与数学 ›› 2005, Vol. 25 ›› Issue (4) : 459-465. DOI: 10.12341/jssms09586
论文

次线性条件下奇异三阶微分方程周期边值问题解的全局结构

    刘衍胜
作者信息 +

GLOBAL STRUCTURE OF SINGULAR PERIODIC BOUNDARY VALUE PROBLEM FOR THIRD ORDER DIFFERENTIAL EQUATION UNDER SUBLINEAR CONDITION

    Liu Yansheng
Author information +
文章历史 +

摘要

讨论三阶微分方程周期边值问题{u+\r3u=\ldf(t,u),0<t<2π;u(i)(0)=u(i)(2π),i=0,1,2, 解的全局结构, 其中 \r(0,\f1\s)为常数, \ldR+=[0,+\i)为参数, ft=0, t=2πu=0处有奇异性, 关于u处满足次线性增长条件.

Abstract

This paper deals with global structure of the following periodic boundary value problem of third order differential equation u+\r3u=\ldf(t,u), 0<t<2π, with u(i)(0)=u(i)(2π), i=0,1,2, where \r(0,\f1\s) is a constant, \ldR+=[0,+\i) is a parameter, and f is singular at t=0, t=2π and u=0. Also, f is sublinear at \i.

关键词

奇异边值问题 / 全局结构 / 三阶微分方程

Key words

Singular boundary value problem / global structure / third order differential equation

引用本文

导出引用
刘衍胜. 次线性条件下奇异三阶微分方程周期边值问题解的全局结构. 系统科学与数学, 2005, 25(4): 459-465. https://doi.org/10.12341/jssms09586
Liu Yansheng. GLOBAL STRUCTURE OF SINGULAR PERIODIC BOUNDARY VALUE PROBLEM FOR THIRD ORDER DIFFERENTIAL EQUATION UNDER SUBLINEAR CONDITION. Journal of Systems Science and Mathematical Sciences, 2005, 25(4): 459-465 https://doi.org/10.12341/jssms09586
PDF(265 KB)

112

Accesses

0

Citation

Detail

段落导航
相关文章

/