较多有效解类的最优性条件和Lagrange对偶定理

王晓敏

系统科学与数学 ›› 2000, Vol. 20 ›› Issue (3) : 324-329.

PDF(344 KB)
PDF(344 KB)
系统科学与数学 ›› 2000, Vol. 20 ›› Issue (3) : 324-329. DOI: 10.12341/jssms09810
论文

较多有效解类的最优性条件和Lagrange对偶定理

    王晓敏
作者信息 +

THE OPTIMALITY CONDITIONS AND THE LAGRANGE DUALITY THEOREMS FOR SEVERAL KINDS OF MAJOR EFFICIENT SOLUTIONS

    Xiao Min WANG
Author information +
文章历史 +

摘要

利用较多锥的内部和闭包,引进多目标规划问题的严格强较多有效解等概念.根据它们的表示定理,建立各类较多有效解的最优性条件,并由此得到严格弱较多有效解的Lagrange直接对偶和严格强较多有效解的tagrange逆对偶定理.

Abstract

The concepts of several kinds of major efficient solutions are defined on the basis of the interior and closure of a major cone.The optimality condition for each kind of major efficient solution is established through its expression theorem.Then the Lagrange direct duality theorem for a strictly weakly major efficient solution and the Lagrange inverse for a strictly strongly major efficient solution are proven.

关键词

多目标规划 / Pareto有效解 / 较多有效解

Key words

Multiobjective programming / Pareto efficient solution / major efficient solution

引用本文

导出引用
王晓敏. 较多有效解类的最优性条件和Lagrange对偶定理. 系统科学与数学, 2000, 20(3): 324-329. https://doi.org/10.12341/jssms09810
Xiao Min WANG. THE OPTIMALITY CONDITIONS AND THE LAGRANGE DUALITY THEOREMS FOR SEVERAL KINDS OF MAJOR EFFICIENT SOLUTIONS. Journal of Systems Science and Mathematical Sciences, 2000, 20(3): 324-329 https://doi.org/10.12341/jssms09810
PDF(344 KB)

183

Accesses

0

Citation

Detail

段落导航
相关文章

/