• 论文 • 上一篇    下一篇

具有时滞和可变营养消耗率的比率型Chemostat模型稳定性分析

董庆来(1)(2), 马万彪(1)   

  1. (1)北京科技大学应用科学学院数力系, 北京 100083; (2)延安大学数学与计算机学院, 延安 716000
  • 收稿日期:2006-09-04 修回日期:2007-05-11 出版日期:2009-02-25 发布日期:2009-02-25

董庆来;马万彪. 具有时滞和可变营养消耗率的比率型Chemostat模型稳定性分析[J]. 系统科学与数学, 2009, 29(2): 228-241.

DONG Qinglai;MA Wanbiao. Stability Analysis of a Ratio-Dependent Chemostat Model withVariable Yield and Time Delay[J]. Journal of Systems Science and Mathematical Sciences, 2009, 29(2): 228-241.

Stability Analysis of a Ratio-Dependent Chemostat Model withVariable Yield and Time Delay

DONG Qinglai(1)(2), MA Wanbiao(1)   

  1. (1)Department of Mathematics and Mechanics, School of Applied Science University of Science and Technology Beijing, Beijing 100083; (2)School of Mathematics and Computer Science, Yan'an University, Yan'an 716000
  • Received:2006-09-04 Revised:2007-05-11 Online:2009-02-25 Published:2009-02-25
考虑了一类具有时滞和可变营养消耗率、增长函数为比率确定型的微生物连续培养模型.
首先,详细地讨论了解的存在性、有界性、平衡点的局部渐近稳定性以及Hopf分支.
其次, 利用 Lyapunov-LaSalle 不变性原理证明了边界平衡点的全局渐近性.
最后, 利用时滞微分系统解的极限集的一些性质,
证明了当正平衡点存在时,对任意时滞系统是一致持久的.
In this paper, based on some biological meanings, a class of
ratio-dependent Chemostat model with variable yield and time delay
is considered. In the Chemostat model, time delay is introduced into
growth response of microbial population. Firstly, a detailed
theoretical analysis about existence and boundedness of the
solutions and local asymptotic stability of the equilibria are
carried out, and the Hopf bifurcation is also studied. Then by
using classical Lyapunov-LaSalle invariance principle, it is shown
that the washout
equilibrium (i.e., boundary equilibrium) is globally asymptotically
stable for any time delay. Finally, it is shown that the Chemostat model is uniformly
persistent for any time delay.

MR(2010)主题分类: 

()
[1] 黄佩, 周少波. 时滞随机SIS传染病模型[J]. 系统科学与数学, 2021, 41(3): 615-626.
[2] 练红海,覃事刚,肖伸平,肖会芹. 基于采样区间分割的线性系统稳定准则[J]. 系统科学与数学, 2021, 41(2): 310-324.
[3] 支霞, 冯红银萍. 输入带有时滞的线性系统的镇定[J]. 系统科学与数学, 2021, 41(1): 17-23.
[4] 张德金, 向淑文, 邓喜才, 杨彦龙. 约束图像拓扑下的向量值拟变分不等式解集的通有稳定性[J]. 系统科学与数学, 2021, 41(1): 115-125.
[5] 傅金波, 陈兰荪. 具有免疫应答和吸收效应的病毒感染模型分析[J]. 系统科学与数学, 2021, 41(1): 280-290.
[6] 晋守博,李耀红,魏章志.  基于大通讯时滞的多智能体系统的控制协议研究[J]. 系统科学与数学, 2020, 40(9): 1531-1538.
[7] 吴红星,程国飞,王胜华. 细菌种群增生中Rotenberg模型解的渐近稳定性研究[J]. 系统科学与数学, 2020, 40(9): 1539-1549.
[8] 杨洋,赵晓冬. 偏好序阈值约束下的三边单向非循环稳定匹配[J]. 系统科学与数学, 2020, 40(8): 1420-1431.
[9] 刘芳,李明涛. 一类具有自发行为的SIRI谣言传播模型研究[J]. 系统科学与数学, 2020, 40(7): 1257-1269.
[10] 练红海,肖伸平,邓鹏. 采样控制系统的稳定性分析新方法[J]. 系统科学与数学, 2020, 40(5): 783-796.
[11] 胡鑫,黄迟. 具有随机脉冲的布尔控制网络的集合稳定性研究[J]. 系统科学与数学, 2020, 40(4): 587-598.
[12] 吴军,郝伟怡,张天星,袁文燕,徐广姝. 基于演化博弈的企业合作创新策略研究[J]. 系统科学与数学, 2020, 40(10): 1766-1776.
[13] 肖峰,甘勤涛,黄欣. 具有多重权值的时滞复杂网络固定时间同步问题研究[J]. 系统科学与数学, 2020, 40(1): 15-28.
[14] 邓鹏,练红海,肖伸平,刘万太,李谟发.  考虑时滞的采样控制系统稳定性分析[J]. 系统科学与数学, 2019, 39(9): 1347-1360.
[15] 高志方,刘亚楠,彭定洪. 云制造稳定性控制的区间犹豫模糊控制图方法[J]. 系统科学与数学, 2019, 39(7): 1017-1030.
阅读次数
全文


摘要