• 论文 • 上一篇    下一篇

两端固定n根系列连接的Timoshenko梁在连接点加控制的镇定问题

韩忠杰, 许跟起   

  1. 天津大学自动化系, 天津 300072; 天津大学数学系, 天津 300072
  • 收稿日期:2007-02-05 修回日期:1900-01-01 出版日期:2008-10-25 发布日期:2008-10-25

韩忠杰;许跟起. 两端固定n根系列连接的Timoshenko梁在连接点加控制的镇定问题[J]. 系统科学与数学, 2008, 28(10): 1193-1214.

HAN Zhongjie;XU Genqi. Analysis of Stability for n-Connected Timoshenko Beams with Both Ends Fixed and Feedback Controller at Intermediate Nodes[J]. Journal of Systems Science and Mathematical Sciences, 2008, 28(10): 1193-1214.

Analysis of Stability for n-Connected Timoshenko Beams with Both Ends Fixed and Feedback Controller at Intermediate Nodes

HAN Zhongjie, XU Genqi   

  1. Department of Automation, Tianjin University, Tianjin 300072; Department of Mathematics, Tianjin University, Tianjin 300072
  • Received:2007-02-05 Revised:1900-01-01 Online:2008-10-25 Published:2008-10-25
文章研究两端固定$n$根系列连接的Timoshenko梁系统的镇定问题,假设该系统在连接点处剪切力和弯曲力矩是连续的,而横向位移和旋转角度是不连续的.在连接点处设置控制器,观测节点处的力,通过补偿器补偿后反馈回系统,构成闭环系统.通过对系统的矩阵化处理,对算子谱采用渐近分析的技巧,证明得到该闭环系统是渐近稳定的.并利用算子谱的分布等性质,在一定条件下得到了闭环系统的Riesz基性质,从而系统满足谱确定增长条件.
The stabilization problem of $n$-connected Timoshenko beams is studied. Suppose that both ends of the beams are claped, and at intermediate nodes, the
shearing force and bending moment are continuous, but the displacement and rotational angle of beams are discontinuous. Shearing force and bending moment at intermediate nodes can be observed. The compensators are designed to obtain the displacements and rotational angles, and the feedback controllers at intermediate nodes are designed to stabilize the system. It is shown that the closed loop system is asymptotically stable. By a lengthy spectral analysis of the system, it is proven that the closed loop system is of Riesz basis property under some conditions. Hence, the spectrum determined growth condition holds.

MR(2010)主题分类: 

()
[1] 何泽荣,陈怀,谢强军. 带有离散个体等级结构的种群系统的控制问题[J]. 系统科学与数学, 2020, 40(3): 410-422.
[2] 石宇静,胡昌敏. 复杂网络的动态输出反馈容错同步控制[J]. 系统科学与数学, 2020, 40(10): 1701-1712.
[3] 张小英,柴树根. 基于输出带干扰非线性一维波动方程的输出反馈镇定[J]. 系统科学与数学, 2019, 39(1): 15-29.
[4] 刘秀芳,许跟起. 内部输入带不同时滞的Tomishenko梁的指数稳定性[J]. 系统科学与数学, 2018, 38(2): 131-146.
[5] 徐再花,刘允刚,李健. 一类不确定双曲型PDE-ODE级联系统的自适应镇定控制[J]. 系统科学与数学, 2018, 38(2): 147-162.
[6] 贾彦娜. 自抗扰控制处理边界带有干扰的具有尖端质量的 Timoshenko 梁方程的稳定性[J]. 系统科学与数学, 2018, 38(11): 1252-1266.
[7] 陈昊,王小瑞. Bresse系统的内部时滞控制器的设计[J]. 系统科学与数学, 2018, 38(1): 16-36.
[8] 王继强,胡忠志,YUE Hong,DIMIROVSKI Georgi. 非线性系统有限时间受限控制[J]. 系统科学与数学, 2017, 37(4): 978-985.
[9] 何志龙,聂麟飞. 具有状态依赖脉冲控制的害虫管理SI模型的动力学性质[J]. 系统科学与数学, 2017, 37(11): 2163-2177.
[10] 徐姝婕,程培,贲顺琦. 不确定脉冲随机系统的几乎必然指数稳定和随机镇定[J]. 系统科学与数学, 2017, 37(1): 10-22.
[11] 李睿,杨萌,楚天广. 概率布尔网络的集合镇定控制[J]. 系统科学与数学, 2016, 36(3): 371-380.
[12] 李雪莲,刘亮. 输入带有时滞的随机前馈非线性系统的全局状态反馈控制[J]. 系统科学与数学, 2016, 36(12): 2225-2233.
[13] 于宁波,李元,徐昌,刘景泰. 一种基于RGB-D SLAM的移动机器人定位和运动规划与控制方法[J]. 系统科学与数学, 2015, 35(7): 838-847.
[14] 付世华,赵建立,潘金凤. 布尔网络的稳定性与镇定[J]. 系统科学与数学, 2014, 34(4): 385-391.
[15] 李伯忍. 具有非线性扰动的线性多时变时滞系统的鲁棒镇定[J]. 系统科学与数学, 2014, 34(4): 392-401.
阅读次数
全文


摘要