信息复杂性准则的深入探讨

吕纯濂

系统科学与数学 ›› 2008, Vol. 28 ›› Issue (6) : 758-768.

PDF(440 KB)
PDF(440 KB)
系统科学与数学 ›› 2008, Vol. 28 ›› Issue (6) : 758-768. DOI: 10.12341/jssms10211
论文

信息复杂性准则的深入探讨

    吕纯濂
作者信息 +

On Informational Complexity Criteria

    LV Chunlian
Author information +
文章历史 +

摘要

介绍联系拟合优度与模型复杂性测度的一种模型选择准则─信息复杂性ICOMP)准则的基本原理. 由Bozdogan提出的信息复杂性(ICOMP)准则可以视为两个Kullback-Leibler距离之和的一种近似. 首先研究了所考虑模型中有真实模型的情况下, ICOMP准则类的渐近相容性;然后又介绍并完成了所考虑模型中没有真实模型的情况下, ICOMP准则类的渐近相容性. 在有限样本容量的情况下,用ICOMP 准则选择的估计模型,比用其他通用的准则选择的估计模型,更接近于真实模型.

Abstract

A rationale for model selection criteria ─ Informational Complexity (ICOMP) Criteria, that combine a badness-of-fit term with a measure of complexity of a model, is introduced. The ICOMP criterion suggested by Bozdogan is seen as an approximation to the sum of two Kullback-Leibler distances. The asymptotic consistency properties of the class of ICOMP criteria are investigated first in the case when one of the models considered is the true model, and then in the case when none of the models is the true model. With finite sample size, the model selected by ICOMP is closer to the true model than the ones obtained by existing methods.

关键词

模型选择 / 信息复杂性 / Kullback-Leibler距离 / Akaike信息准则 / Bayes信息准则.

Key words

Model selection / ICOMP / Kullback-Leibler distance / AIC / BIC.

引用本文

导出引用
吕纯濂. 信息复杂性准则的深入探讨. 系统科学与数学, 2008, 28(6): 758-768. https://doi.org/10.12341/jssms10211
LV Chunlian. On Informational Complexity Criteria. Journal of Systems Science and Mathematical Sciences, 2008, 28(6): 758-768 https://doi.org/10.12341/jssms10211
中图分类号: 62J99   
PDF(440 KB)

Accesses

Citation

Detail

段落导航
相关文章

/