确定线性偏微分方程组可积系统的对合特征集方法

孟晓辉;陈玉福

系统科学与数学 ›› 2006, Vol. 26 ›› Issue (4) : 440-455.

PDF(517 KB)
PDF(517 KB)
系统科学与数学 ›› 2006, Vol. 26 ›› Issue (4) : 440-455. DOI: 10.12341/jssms10262
论文

确定线性偏微分方程组可积系统的对合特征集方法

    孟晓辉;陈玉福
作者信息 +

on Completely Integrable System of Linear PDEs with Involutive Characteristic Set Method

    Meng Xiaohui; Chen Yufu
Author information +
文章历史 +

摘要

基于Ritt-Wu特征集方法和Riquier-Janet理论, 给出一种将线性微分方程组化成简单标准形式的有效算法. 该算法通过消去冗余和添加可积条件获得线性微分方程组的完全可积系统(有形式幂级数解)或不相容判定. 该算法不仅适用于常系数的线性偏微分方程组, 而且对于变系数(以函数为系数)仍然有效. 作者还给出了完全可积系统判定定理及其严格证明.

Abstract

Based on the Ritt-Wu's characteristic set method and Riquier-Janet theory, an algorithm to reduce the linear PDE system to a normal form is presented. With this algorithm, we get completely integrable system of linear PDE system by removing redundant terms and adding new integrability conditions. The theorem determining whether a system is completely integrable is given in the paper, and its proof is provided as well. Our algorithm is applicable not only to the linear PDEs with constant coefficients but also to the general case.

关键词

线性偏微分方程组 / 完全可积系统 / 对合特征集 / 延拓方向

Key words

Linear partial differential equations / completely integrable system / involutive characteristic set / prolongation direction

引用本文

导出引用
孟晓辉 , 陈玉福. 确定线性偏微分方程组可积系统的对合特征集方法. 系统科学与数学, 2006, 26(4): 440-455. https://doi.org/10.12341/jssms10262
Meng Xiaohui , Chen Yufu. on Completely Integrable System of Linear PDEs with Involutive Characteristic Set Method. Journal of Systems Science and Mathematical Sciences, 2006, 26(4): 440-455 https://doi.org/10.12341/jssms10262
中图分类号: 68W30   
PDF(517 KB)

223

Accesses

0

Citation

Detail

段落导航
相关文章

/