向量拟平衡问题的本质解及解集的本质连通区

杨辉;俞建

系统科学与数学 ›› 2004, Vol. 24 ›› Issue (1) : 74-084.

PDF(308 KB)
PDF(308 KB)
系统科学与数学 ›› 2004, Vol. 24 ›› Issue (1) : 74-084. DOI: 10.12341/jssms10300
论文

向量拟平衡问题的本质解及解集的本质连通区

    杨辉(1),俞建(2)
作者信息 +

ESSENTIAL SOLUTIONS AND ESSENTIAL COMPONENTS OF SOLUTION SET OF VECTOR QUASI-EQUILIBRIUM PROBLEMS

    Hui YANG(1),Jian YU(2)
Author information +
文章历史 +

摘要

本文研究向量拟平衡问题,得到了向量拟平衡问题解的 一个存在性结果, 证明了在满足一定的连续性和凸性条件的问题构成的空间Y中, 大多数(在Baire分类意义下) 问题的解集是 稳定的, 并证明Y的某子集中, 每个向量拟平衡问题的解集中至少存在一个本质连通区. 作为应用,我们导出了多目标广义对策弱Pareto-Nash 平衡点的存在性, 证明了在满足一定的连续性和凸性条件的 多目标广义对策构成的空间P中, 大多数对策 的弱Pareto-Nash平衡点是稳定的, 并证明了P中的每个对策的 弱Pareto-Nash平衡点集中至少有一个本质连通区.

Abstract

In this paper, we study the vector quasi-equilibrium problems. An existence theorem is obtained. We prove that, in the space Y consisting of vector quasi-equilibrium problems (satisfying some continuity and convexity conditions), most problems (in the sense of Baire category) have stable solution sets, and in a subset of Y, every problem possesses at least one essential component of its solution set. As applications, we derive an existence theorem of weak Pareto-Nash equilibrium points for multiobjective generalized games. Moverover, we show that, in the space P consisting of multiobjective generalized games (satisfying some continuity and convexity conditions), most games (in the sense of Baire category) have stable weak Pareto-Nash equilibrium point sets and every game in P has at least one essential component of its weak Pareto-Nash equilibrium point set.

关键词

向量拟平衡问题 / 本质解 / 本质连通区 / 多目

Key words

Vector quasi-equilibrium problem / essential solution / essential component / multiobjective generalized

引用本文

导出引用
杨辉 , 俞建. 向量拟平衡问题的本质解及解集的本质连通区. 系统科学与数学, 2004, 24(1): 74-084. https://doi.org/10.12341/jssms10300
Hui YANG , Jian YU. ESSENTIAL SOLUTIONS AND ESSENTIAL COMPONENTS OF SOLUTION SET OF VECTOR QUASI-EQUILIBRIUM PROBLEMS. Journal of Systems Science and Mathematical Sciences, 2004, 24(1): 74-084 https://doi.org/10.12341/jssms10300
PDF(308 KB)

185

Accesses

0

Citation

Detail

段落导航
相关文章

/