微分、差分域中的Wronskian行列式

李应弘, 冯如勇

系统科学与数学 ›› 2011, Vol. 31 ›› Issue (5) : 620-628.

PDF(367 KB)
PDF(367 KB)
系统科学与数学 ›› 2011, Vol. 31 ›› Issue (5) : 620-628. DOI: 10.12341/jssms11615
论文

微分、差分域中的Wronskian行列式

    李应弘, 冯如勇
作者信息 +

WRONSKIAN DETERMINANTS OVER DIFFERENTIAL AND DIFFERENCE FIELDS

    LI Yinghong, FENG Ruyong
Author information +
文章历史 +

摘要

众所周知, 给定微分或差分域上一组元素, 它们在常数域上线性相关当且仅当它们所对应的Wronskian行列式或者Casoratian行列式为零.文章将这个结果推广到具有微分导子和差分导子的微分差分域; 同时基于~Okugawa~的工作, 还将结果推广到特征非~0~的微分差分域.

Abstract

It is well-known that given finitely many of elements in a differential filed (difference field), these elements are linearly dependent over its constant field if and only if the corresponding Wronskian determinant (Casoratian determinant) vanishes. This paper generalizes these classical results into differential-difference fields, that is, the field including both differential operators and shift  operators. Based on Okugawa's work,   the results are generalized   to differential-difference fields with positive characteristic.  

关键词

微分差分域 /   / Wronskian行列式 /   / 微分导子 / 差分导子 /   / 迭代微分导子

Key words

Differential-difference field / wronskian determinant /  differential operator / shift operator /  iterative differential operator

引用本文

导出引用
李应弘, 冯如勇. 微分、差分域中的Wronskian行列式. 系统科学与数学, 2011, 31(5): 620-628. https://doi.org/10.12341/jssms11615
LI Yinghong, FENG Ruyong. WRONSKIAN DETERMINANTS OVER DIFFERENTIAL AND DIFFERENCE FIELDS. Journal of Systems Science and Mathematical Sciences, 2011, 31(5): 620-628 https://doi.org/10.12341/jssms11615
中图分类号: 68W30   
PDF(367 KB)

345

Accesses

0

Citation

Detail

段落导航
相关文章

/