一类线性模型中参数的平衡LS估计的性质

柏超

系统科学与数学 ›› 2011, Vol. 31 ›› Issue (7) : 817-823.

PDF(256 KB)
PDF(256 KB)
系统科学与数学 ›› 2011, Vol. 31 ›› Issue (7) : 817-823. DOI: 10.12341/jssms11650
论文

一类线性模型中参数的平衡LS估计的性质

    柏超
作者信息 +

CONSTRUCTION OF GLOBAL WEAK ENTROPY SOLUTION  OF INITIAL-BOUNDARY VALUE PROBLEM FOR  NONCONVEX  SCALAR   CONSERVATION LAWS

    BAI Chao
Author information +
文章历史 +

摘要

对于线性回归模型中平衡LS估计这一类含参数t和参数矩阵L的估计, 进一步讨论了tL的取值对平衡LS估计优良性的影响, 得到了平衡LS估计在某些准则
下优于OLS估计的条件.

Abstract

This paper is concerned with an initial-boundary problem of nonconvex scalar conservation laws with two pieces of constant initial data and
constant boundary data. Under the condition that the flux function has one inflection point, by the structure of weak entropy solution of the corresponding initial value problem and the boundary entropy condition developed by Bardos-Leroux-Nedelec, we give a construction method for the global weak entropy solution of the initial-boundary value problem and clarify the solution structure nearby the boundary. In contrast to the initial-boundary value problem for strictly convex
scalar conservation laws, the weak entropy solution of the initial-boundary value problem for nonconvex scalar conservation laws includes the following new interaction type: a contact or non-contact shock collides with the boundary and a new non-contact shock wave rebounds from the boundary.

关键词

线性回归模型 / 平衡LS估计 / OLS估计

Key words

Nonconvex scalar conservation laws / initial-boundary problem / boundary entropy condition / global weak entropy solution

引用本文

导出引用
柏超. 一类线性模型中参数的平衡LS估计的性质. 系统科学与数学, 2011, 31(7): 817-823. https://doi.org/10.12341/jssms11650
BAI Chao. CONSTRUCTION OF GLOBAL WEAK ENTROPY SOLUTION  OF INITIAL-BOUNDARY VALUE PROBLEM FOR  NONCONVEX  SCALAR   CONSERVATION LAWS. Journal of Systems Science and Mathematical Sciences, 2011, 31(7): 817-823 https://doi.org/10.12341/jssms11650
中图分类号: 62J05   
PDF(256 KB)

270

Accesses

0

Citation

Detail

段落导航
相关文章

/