0-1对策的完全混合Nash均衡的代数求解法

姜殿玉

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (2) : 161-171.

PDF(366 KB)
PDF(366 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (2) : 161-171. DOI: 10.12341/jssms11819
论文

0-1对策的完全混合Nash均衡的代数求解法

    姜殿玉
作者信息 +

ALGEBRAIC SOLUTIONS TO COMPLETELY MIXED NASH EQUILIBRIA IN A 0-1 GAME

    JIANG Dianyu
Author information +
文章历史 +

摘要

将求解一般0-1策略对策的完全混合Nash均衡的问题转化为求解根为正的纯小数的高次代数方程组的问题.作为一种特殊而重要的情形,利用Pascal 矩阵,Newton矩阵(对角元素为Newton 二项式系数的对角矩阵)和Pascal-Newton 矩阵(Pascal 矩阵和Newton 矩阵的逆阵的乘积)将求解对称0-1 对策的完全混合Nash均衡的问题转化为求解根为正的纯小数的高次代数方程的问题,并给出第二问题的反问题(由完全混合Nash 均衡求解对称0-1 对策族)的求解方法.同时,给出了一些算例来说明对应问题的算法.

Abstract

In this paper, the problem to solve completely mixed Nash equilibria in a general 0-1 strategy game is changed as the problem to solve a system of high degree algebraic equations whose roots are positive and pure decimals. As a special and important case, the problem to solve completely mixed Nash equilibria in a symmetrical 0-1 game is changed as the problem to solve a high degree algebraic equation whose roots are positive and pure decimals by Pascal matrix, Newtonian matrix (a diagonal matrix whose diagonal elements are Newtonian binomial coefficients), and Pascal-Newtonianmatrix (product of Pascalmatrix and converse of Newtonian matrix). The method of solving converse of the second problem that family of 0-1 symmetrical games is solved by their common completely mixed Nash equilibrium is also given. At the end of the paper, the some examples are given.

关键词

  / 0-1对策 / 完全混合Nash均衡 / Pascal 矩阵 / Newton二项式系数 / 高次代数方程.

引用本文

导出引用
姜殿玉. 0-1对策的完全混合Nash均衡的代数求解法. 系统科学与数学, 2012, 32(2): 161-171. https://doi.org/10.12341/jssms11819
JIANG Dianyu. ALGEBRAIC SOLUTIONS TO COMPLETELY MIXED NASH EQUILIBRIA IN A 0-1 GAME. Journal of Systems Science and Mathematical Sciences, 2012, 32(2): 161-171 https://doi.org/10.12341/jssms11819
中图分类号: 90D10   
PDF(366 KB)

254

Accesses

0

Citation

Detail

段落导航
相关文章

/