关于连续区间映射的敏感依赖性

吴新星,朱培勇

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (2) : 215-225.

PDF(352 KB)
PDF(352 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (2) : 215-225. DOI: 10.12341/jssms11825
论文

关于连续区间映射的敏感依赖性

    吴新星,朱培勇
作者信息 +

ON SENSITIVE DEPENDENCE OF CONTINUOUS INTERVAL MAPPINGS

    WU Xinxing , ZHU Peiyong
Author information +
文章历史 +

摘要

首先证明: 若区间映射f是敏感依赖的, 则f的拓扑熵ent(f)>0. 然后通过引入一种扩张映射进一步证明了敏感依赖的区间映射的拓扑熵的下确界为0, 即, 上式中拓扑熵的下界0是最优的.最后通过实例展示稠混沌、Spatio-temporal混沌、Li-Yorke敏感及敏感性之间是几乎互不蕴含的.

Abstract

In this paper, it is first proved that the topological entropy of f is positive provided that f is sensitive interval map. Then, by introducing of a kind of extended mappings, it is proved that the infimum of topological entropy of sensitive interval mappings is 0, which shows that the lower bound 0 of the topological entropy is optimal. Finally, some examples are given to show that dense chaos, Spatio-temporal chaos, Li-Yorke sensitivity and sensitivity are almost all independent.

关键词

敏感依赖 / 稠混沌 / Spatio-temporal混沌 / Li-Yorke敏感 / 拓扑熵 / Markov映射.

引用本文

导出引用
吴新星,朱培勇. 关于连续区间映射的敏感依赖性. 系统科学与数学, 2012, 32(2): 215-225. https://doi.org/10.12341/jssms11825
WU Xinxing , ZHU Peiyong. ON SENSITIVE DEPENDENCE OF CONTINUOUS INTERVAL MAPPINGS. Journal of Systems Science and Mathematical Sciences, 2012, 32(2): 215-225 https://doi.org/10.12341/jssms11825
中图分类号: 54H20    58F03    58F08   
PDF(352 KB)

268

Accesses

0

Citation

Detail

段落导航
相关文章

/