Banach空间中一类广义变分不等式的强收敛定理

刘英

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (5) : 591-600.

PDF(296 KB)
PDF(296 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (5) : 591-600. DOI: 10.12341/jssms11891
论文

Banach空间中一类广义变分不等式的强收敛定理

    刘英
作者信息 +

STRONG CONVERGENCE THEOREMS FOR A GENERALIZED VARIATIONAL INEQUALITIE IN BANACH SPACES

    LIU Ying
Author information +
文章历史 +

摘要

应用广义f-投影算子引入了一类新的迭代方法, 并用此方法在Banach空间的非紧子集上证明了一个关于一类广义变分不等式的强收敛定理; 该定理中所涉及到的映射既不具备紧性也不具备单调性.所得结果推广了最近一些相关定理.

Abstract

By using the generalized f-projection operator and the monotone hybrid pro-jection method, we introduce a new iterative sequence for finding a solution of a  eneralized variational inequality. Moreover, we obtain a strong convergence theorem for the generalized variational inequality in noncompact subsets of Banach spaces without assuming the compact- ness of mappings. Conditions on the theorem are weaker than those of recent some related theorems. The conclusions extend and develop previous related results.

关键词

广义变分不等式 / 柯西列 / 广义f-投影 / 连续性

引用本文

导出引用
刘英. Banach空间中一类广义变分不等式的强收敛定理. 系统科学与数学, 2012, 32(5): 591-600. https://doi.org/10.12341/jssms11891
LIU Ying. STRONG CONVERGENCE THEOREMS FOR A GENERALIZED VARIATIONAL INEQUALITIE IN BANACH SPACES. Journal of Systems Science and Mathematical Sciences, 2012, 32(5): 591-600 https://doi.org/10.12341/jssms11891
中图分类号: 47H09    47H05   
PDF(296 KB)

193

Accesses

0

Citation

Detail

段落导航
相关文章

/