基于符号数值混合计算的混成系统Lyapunov函数构造

林望,吴敏,杨争锋,曾振柄

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (5) : 610-625.

PDF(406 KB)
PDF(406 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (5) : 610-625. DOI: 10.12341/jssms11893
论文

基于符号数值混合计算的混成系统Lyapunov函数构造

    林望1,吴敏2,杨争锋2,曾振柄2
作者信息 +

COMPUTING THE VERIFIED LYAPUNOV FUNCTIONS OF HYBRID SYSTEMS BY SYMBOLIC-NUMERIC METHOD

    LIN Wang1, WU Min2, YANG Zhengfeng2 ,ZENG Zhenbing2
Author information +
文章历史 +

摘要

基于平方和松弛和有理向量恢复, 提出了一种符号数值混合计算方法来构造多项式 Lyapunov 函数以判定非线性混成系统的稳定性. 首先, 为Lyapunov函数预定一个给定次数的多项式模板, 则Lyapunov函数构造问题可转化为相应的带参数的多项式优化问题, 然后运用平方和松弛方法求得一个近似的数值多项式Lyapunov函数,
再应用高斯-牛顿精化和有理向量恢复将数值多项式转化为验证的有理多项式Lyapunov函数.

Abstract

In this paper, we present a symbolic-numeric hybrid method, based on Sum-of-Squares (SOS) relaxation and rational vector recovery, to compute an verified Lyapunov func- tion for analyzing the stability of nonlinear hybrid systems. At first, finding Lyapunov functions of hybrid systems can be converted into the  onstrained polynomial optimization problem with parameters. SOS relaxation method is then used to compute approximate Lyapunov functions with floating point coefficients. And Gauss-Newton refinement and rational vector recovery are applied on the approximate polynomials to obtain candidates, whose coefficients are rational numbers. The existences of SOS representation is used to verify the polynomial which exactly satisfies the conditions of Lyapunov functions. In the end, several examples are given to show that our method can successfully yield Lyapunov functions with rational coefficients.

关键词

混成系统 / Lyapunov函数 / 平方和松弛 / 半正定规划

引用本文

导出引用
林望,吴敏,杨争锋,曾振柄. 基于符号数值混合计算的混成系统Lyapunov函数构造. 系统科学与数学, 2012, 32(5): 610-625. https://doi.org/10.12341/jssms11893
LIN Wang, WU Min, YANG Zhengfeng ,ZENG Zhenbing. COMPUTING THE VERIFIED LYAPUNOV FUNCTIONS OF HYBRID SYSTEMS BY SYMBOLIC-NUMERIC METHOD. Journal of Systems Science and Mathematical Sciences, 2012, 32(5): 610-625 https://doi.org/10.12341/jssms11893
中图分类号: 34A38    68W30   
PDF(406 KB)

307

Accesses

0

Citation

Detail

段落导航
相关文章

/