一类单中心二次可积系统的 Abel积分零点个数

张永康,李翠萍,李宝毅

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (5) : 626-640.

PDF(473 KB)
PDF(473 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (5) : 626-640. DOI: 10.12341/jssms11894
论文

一类单中心二次可积系统的 Abel积分零点个数

    张永康1,李翠萍1,李宝毅2
作者信息 +

THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A CLASS OF PLANE QUDRATIC INTEGRABLE SYSTEMS WITH ONE CENTRE

    ZHANG Yongkang1 ,LI Cuiping1,LI Baoyi2
Author information +
文章历史 +

摘要

讨论了首次积分为H(x,y)=xk(12y2+Ax2+Bx+C)的Abel积分的代数构造,并研究了k=2时具有一个中心的平面二次可积系统在n次扰动下的Abel积分零点个数上界问题,得到了较小的上界估计.

Abstract

In this paper, we obtain the finite generators of Abelian integral I(h) =H??h(M(x, y)g(x, y)) dx − (M(x, y)f(x, y)) dy, where ??h is a family of closed ovals defined by
H(x, y) = xk( 12y2+Ax2+Bx+C) = h, h ∈ , k is a positive integer,  is the open interval on which ??h is defined, f(x, y) and g(x, y) are real polynomials in x and y of degrees, not exceeding n. An upper bound of the number of zeros of Abelian integral I(h), for the above system with one centre, is given by its algebraic structure for a special case.In this paper, we obtain the finite generators of Abelian integral I(h) =H??h(M(x, y)g(x, y)) dx − (M(x, y)f(x, y)) dy, where ??h is a family of closed ovals defined by H(x, y) = xk( 12y2+Ax2+Bx+C) = h, h ∈ , k is a positive integer,  is the open interval on which ??h is defined, f(x, y) and g(x, y) are real polynomials in x and y of degrees, not exceeding n. An upper bound of the number of zeros of Abelian integral I(h), for the above system with one centre, is given by its algebraic structure for a special case.

关键词

Abel积分 / Picard-Fuchs方程 / Riccati方程

引用本文

导出引用
张永康,李翠萍,李宝毅. 一类单中心二次可积系统的 Abel积分零点个数. 系统科学与数学, 2012, 32(5): 626-640. https://doi.org/10.12341/jssms11894
ZHANG Yongkang ,LI Cuiping,LI Baoyi. THE NUMBER OF ZEROS OF ABELIAN INTEGRALS FOR A CLASS OF PLANE QUDRATIC INTEGRABLE SYSTEMS WITH ONE CENTRE. Journal of Systems Science and Mathematical Sciences, 2012, 32(5): 626-640 https://doi.org/10.12341/jssms11894
中图分类号: 34C05    34C07    34C08   
PDF(473 KB)

240

Accesses

0

Citation

Detail

段落导航
相关文章

/