Negative binomial sampling are wildy used in epidemiology and many other fields owing to its good performance in binary results clinical trails when the prevalence of the disease is rare. As a measurement of drug effect of randomized controlled trials with binary outcomes, the number needed to treat (NNT) is a useful way of reporting trials results. In clinical appliction, we prefer to report the confidence interval of the number needed to treat. The most popular confidence interval for a number needed to treat is the Wald type interval. Unfortunately, the upper confidence limit of Wald type interval often trends to be unreliable. In this paper, the shortest interval is proposed as an improved confidence interval for the number need to be treat which can reduce the upper confidence limit of the interval. Monte Calro Simulation method is used to compare the perfromance of the improved interval with the Wald type interval, and two illustratvie examples show that the improved interval has a coverage probablity close to the confidence coefficient 95% and can reduce the upper onfidence limit of interval significantly, which is of practical importance.
SHU Huan ,FENG Dadao ,TIAN Maozai.
IMPROVED CONFIDENCE INTERVAL FOR THE NUMBER NEEDED TO TREAT UNDER NEGATIVE BINOMIAL SAMPLING. Journal of Systems Science and Mathematical Sciences, 2012, 32(9): 1047-1056 https://doi.org/10.12341/jssms11978