矩阵半张量积的基本原理与适用领域

程代展,齐洪胜

系统科学与数学 ›› 2012, Vol. 32 ›› Issue (12) : 1488-1496.

PDF(415 KB)
PDF(415 KB)
系统科学与数学 ›› 2012, Vol. 32 ›› Issue (12) : 1488-1496. DOI: 10.12341/jssms12028
论文

矩阵半张量积的基本原理与适用领域

    程代展,齐洪胜
作者信息 +

PRINCIPLE AND RANGE OF POSSIBLE APPLICATIONS OF SIME-TENSOR PRODUCT OF MATRICES

    CHENG Daizhan ,QI Hongsheng
Author information +
文章历史 +

摘要

作为一种新的矩阵乘法, 矩阵半张量积正得到国内外学者越来越多的重视和参与, 从而使之应用于越来越多的研究课题中.希望分析矩阵半张量积的基本原理,从其合理性说明它产生的必然性和存在的意义. 同时,与已有的综述不同,这里不准备具体介绍它在那些问题中得到那些应用,而是从原理出发, 说明它可能在那些类型的相关科学问题中得到应用.这使我们能够更主动地去开发它可能的潜在应用.

Abstract

As a new matrix product, semi-tensor product of matrices has attracted more and more attention and participation from domestic and international academic
society, and it has been applied to more and more research topics. The purpose of this paper is to analyze the fundamental principle of semi-tensor product, and to explain the reason for the emergence and existence of the semi-tensor product. Unlike the existing surveys, this paper does not intend to introduce what applications the semi- tensor product has been used to. Instead, we want to explore what kind of problems the semi-tensor product might be used according to the essence of semi-tensor product. Such observation could help us to dig out unknown possible further applications of semi-tensor product.

关键词

矩阵半张量积 / 布尔网络 / 泛代数 / 多元多项式 / 非线性矩阵方法 / 状态空间与正则子空间.

引用本文

导出引用
程代展,齐洪胜. 矩阵半张量积的基本原理与适用领域. 系统科学与数学, 2012, 32(12): 1488-1496. https://doi.org/10.12341/jssms12028
CHENG Daizhan ,QI Hongsheng. PRINCIPLE AND RANGE OF POSSIBLE APPLICATIONS OF SIME-TENSOR PRODUCT OF MATRICES. Journal of Systems Science and Mathematical Sciences, 2012, 32(12): 1488-1496 https://doi.org/10.12341/jssms12028
中图分类号: 60A10   
PDF(415 KB)

1693

Accesses

0

Citation

Detail

段落导航
相关文章

/