马氏链环境中复合二项风险模型的建立和构造

肖临,欧辉,杨向群

系统科学与数学 ›› 2013, Vol. 33 ›› Issue (3) : 255-263.

PDF(329 KB)
PDF(329 KB)
系统科学与数学 ›› 2013, Vol. 33 ›› Issue (3) : 255-263. DOI: 10.12341/jssms12058
论文

马氏链环境中复合二项风险模型的建立和构造

    肖临1,欧辉2,杨向群2
作者信息 +

 ESTABLISHMENT AND CONSTRUCTION OF COMPOUND BINOMIAL RISK MODEL IN MARKOV-CHAIN ENVIRONMENT

    XIAO Lin1,OU Hui2 ,YANG Xiangqun2
Author information +
文章历史 +

摘要

马氏链环境中复合二项风险模型(Compound binomial risk model in Markov-chain environment),简记 为MECM. Cossette(2004)对MECM的定义含混,文中以反例指出了这一点.严格地 建立了MECM(\ItΘ, I, B),给出其特征四元组(ξ,\ItΓ\ItΘ,αI,FB). 该模型较Cossette(2004)广泛. 并且在给定一个四元组 (ξ,\ItΓ,α,F)时, 证明了: 存在MECM(\ItΘ, I,  B),其特征四元组与给定的(ξ,\ItΓ,α,F)重合.这里存在性证明是构造性的.

Abstract

MECM is short for compound binomial risk model in Markov-chain environment. Definition and its conditions of MECM in Cossette(2004) are not clear enough, in this paper we point out it with a counterexample. The strictly MECM(, I , B) is established, and its characteristic 4-tuple (, ??, I , FB) is given. The new model in this paper is more extensive than the model in Cossette(2004). Moreover, one 4-tuple (, ??, , F) is given, it is shown that there exists MECM(, I , B), and its characteristic 4-tuple is just the above given (, ??, , F). The proof of the existence of the MECM(, I , B) is constructive.

关键词

马氏链环境 / 复合二项风险模型 / 特征四元组 / 存在性 / 构造定理.

引用本文

导出引用
肖临,欧辉,杨向群. 马氏链环境中复合二项风险模型的建立和构造. 系统科学与数学, 2013, 33(3): 255-263. https://doi.org/10.12341/jssms12058
XIAO Lin,OU Hui ,YANG Xiangqun.  ESTABLISHMENT AND CONSTRUCTION OF COMPOUND BINOMIAL RISK MODEL IN MARKOV-CHAIN ENVIRONMENT. Journal of Systems Science and Mathematical Sciences, 2013, 33(3): 255-263 https://doi.org/10.12341/jssms12058
中图分类号: 60K30    90A46   
PDF(329 KB)

260

Accesses

0

Citation

Detail

段落导航
相关文章

/