中国能源效率的空间模式与差异化节能路径------基于DEA三阶段模型的分析

沈能,王群伟

系统科学与数学 ›› 2013, Vol. 33 ›› Issue (4) : 457-467.

PDF(606 KB)
PDF(606 KB)
系统科学与数学 ›› 2013, Vol. 33 ›› Issue (4) : 457-467. DOI: 10.12341/jssms12075
论文

中国能源效率的空间模式与差异化节能路径------基于DEA三阶段模型的分析

    沈能,王群伟
作者信息 +

SPATIAL PATTERNS OF ENERGY EFFICIENCY AND DIFFERENT ENERGY-SAVING PATH IN CHINA —BASED ON THREE-STAGE DEA MODEL

    SHEN Neng, WANG Qunwei
Author information +
文章历史 +

摘要

为了剥离环境和误差因素对能源效率值测算的影响,运用三阶段DEA模型,将污染排放指数作为非合意性产出测度我国区域能源效率.研究表明:纯技术效率不高是制约我国大多数省份能源效率提升的主要因素,结合各地区能源效率与投入水平,可以将我国各地区划分为相对效率高投入、相对效率低投入、高效率高投入、高效率低投入、低效率高投入和低效率低投入等6种能源效率模式;同时运用面板门限模型检验了产业结构与能源效率的门槛效应,发现产业结构与能源效率之间呈现倒``U"型关系.因此,在改进能源效率过程中,必须考虑不同地区的经济发展阶段和产业特征,采取差异化的节能减排政策.

Abstract

In order to exclude the influence of environmental variables and random errors on the energy efficiency, this paper uses the three-stage DEA model to calculate the energy efficiency in China. The results indicate that energy efficiency in China has been constrained by pure  technical efficiency. Considering the energy efficiency and input, we divide 30 provinces   in China into six energy efficiency models:   relative efficiency and high input, relative efficiency and low input,  high efficiency and high input,  high efficiency and low input, low efficiency and high input as well as low  efficiency and low input. Then nonlinear threshold panel model is used to analyze ``threshold effect"   between the industrial structure and energy efficiency. The result indicates that there exists an inverted U-type relationship between   the industrial structure and energy efficiency. Therefore, different energy-saving policies should be taken to consider the different stages of economic development and industrial characteristics.

关键词

能源效率 / DEA三阶段模型 / 非合意产出.

引用本文

导出引用
沈能,王群伟. 中国能源效率的空间模式与差异化节能路径------基于DEA三阶段模型的分析. 系统科学与数学, 2013, 33(4): 457-467. https://doi.org/10.12341/jssms12075
SHEN Neng, WANG Qunwei. SPATIAL PATTERNS OF ENERGY EFFICIENCY AND DIFFERENT ENERGY-SAVING PATH IN CHINA —BASED ON THREE-STAGE DEA MODEL. Journal of Systems Science and Mathematical Sciences, 2013, 33(4): 457-467 https://doi.org/10.12341/jssms12075
中图分类号: 62P05   
PDF(606 KB)

311

Accesses

0

Citation

Detail

段落导航
相关文章

/