奇异三阶广义右聚焦边值问题的正解

姚庆六

系统科学与数学 ›› 2013, Vol. 33 ›› Issue (4) : 480-487.

PDF(331 KB)
PDF(331 KB)
系统科学与数学 ›› 2013, Vol. 33 ›› Issue (4) : 480-487. DOI: 10.12341/jssms12077
论文

奇异三阶广义右聚焦边值问题的正解

    姚庆六
作者信息 +

POSITIVE SOLUTIONS OF SINGULAR THIRD-ORDER GENERALIZED RIGHT FOCAL BOUNDARY VALUE PROBLEMS

    YAO Qingliu
Author information +
文章历史 +

摘要

考察了非线性三阶三点广义右聚焦边值问题u(t)=f(t,u(t)),  0<t<1,\qu(0)=u(η)=0,\qγu(1)+\deltau(1)=0的正解存在性与多解性, 其中12<η<1并且f(t,u)可以在t=0, t=1u=0处奇异. 通过引入两个非线性项在燕尾形区域上的高度函数,并且考察这些高度函数的积分来估计解的先验界. 根据锥拉伸锥压缩型的Guo-Krasnoselskii不动点定理获得了某些新的结论.

Abstract

The existence and multiplicity of positive solutions are considered for the nonlinear third-order three-point generalized right focal boundary value problems
u′′′(t) = f(t, u(t)), 0 < t < 1, u(0) = u′() = 0,  u(0) + u′′(1) = 0, where 1 2 <  < 1 and the olinear term f(t, u) may be singular at t = 0, t = 1 and u = 0. By introducing two height functions of the nonlinear term on some swallow- tailed regions and considering integrations of the height functions, the a priori bound
of solution is estimated. According to the Guo-Krasnoselskii fixed point theorem of cone expansion-compression type, several new results are obtained.

关键词

奇异常微分方程 / 多点边值问题 / 正解 / 存在性 / 多解性.

引用本文

导出引用
姚庆六. 奇异三阶广义右聚焦边值问题的正解. 系统科学与数学, 2013, 33(4): 480-487. https://doi.org/10.12341/jssms12077
YAO Qingliu. POSITIVE SOLUTIONS OF SINGULAR THIRD-ORDER GENERALIZED RIGHT FOCAL BOUNDARY VALUE PROBLEMS. Journal of Systems Science and Mathematical Sciences, 2013, 33(4): 480-487 https://doi.org/10.12341/jssms12077
中图分类号: 34B10    34B16    34B18   
PDF(331 KB)

212

Accesses

0

Citation

Detail

段落导航
相关文章

/