单主多从博弈中中级社会Nash均衡的存在性与应用

杨哲,蒲勇健

系统科学与数学 ›› 2013, Vol. 33 ›› Issue (7) : 777-784.

PDF(322 KB)
PDF(322 KB)
系统科学与数学 ›› 2013, Vol. 33 ›› Issue (7) : 777-784. DOI: 10.12341/jssms12130
论文

单主多从博弈中中级社会Nash均衡的存在性与应用

    杨哲1,蒲勇健2
作者信息 +

THE EXISTENCE OF INTERMEDIATE SOCIAL NASH EQUILIBRIA FOR ONE-LEADER-MULTI-FOLLOWER GAMES AND ITS APPLICATION

    YANG Zhe1, PU Yongjian2
Author information +
文章历史 +

摘要

对单主多从博弈进行分析, 给出跟随者反应函数的相关性质.进一步, 针对跟随者反应函数是集值映射的情形, 定义出中级社会Nash均衡, 讨论该均衡的存在性, 并把该均衡应用到非线性反需求函数的单主多从寡头竞争, 得出该模型的中级社会Nash均衡解.

Abstract

One-leader-multi-follower games are studied, and characteristics of the replying function of followers are obtained. Furthermore, if the replying function
of followers is set-valued, then we define intermediate social Nash equilibrium, and prove its existence under certain sufficient condition. As an application, we obtain the intermediate social Nash equilibrium in the oligarchic competition model, whose inverse demand function is nonlinear.

关键词

单主多从博弈 / 中级社会Nash均衡 / 存在性 / 寡头竞争.

引用本文

导出引用
杨哲,蒲勇健. 单主多从博弈中中级社会Nash均衡的存在性与应用. 系统科学与数学, 2013, 33(7): 777-784. https://doi.org/10.12341/jssms12130
YANG Zhe, PU Yongjian. THE EXISTENCE OF INTERMEDIATE SOCIAL NASH EQUILIBRIA FOR ONE-LEADER-MULTI-FOLLOWER GAMES AND ITS APPLICATION. Journal of Systems Science and Mathematical Sciences, 2013, 33(7): 777-784 https://doi.org/10.12341/jssms12130
中图分类号: 91A10    91A40    91A44   
PDF(322 KB)

276

Accesses

0

Citation

Detail

段落导航
相关文章

/