摘要
对单主多从博弈进行分析, 给出跟随者反应函数的相关性质.进一步, 针对跟随者反应函数是集值映射的情形, 定义出中级社会Nash均衡, 讨论该均衡的存在性, 并把该均衡应用到非线性反需求函数的单主多从寡头竞争, 得出该模型的中级社会Nash均衡解.
Abstract
One-leader-multi-follower games are studied, and characteristics of the replying function of followers are obtained. Furthermore, if the replying function
of followers is set-valued, then we define intermediate social Nash equilibrium, and prove its existence under certain sufficient condition. As an application, we obtain the intermediate social Nash equilibrium in the oligarchic competition model, whose inverse demand function is nonlinear.
关键词
单主多从博弈 /
中级社会Nash均衡 /
存在性 /
寡头竞争.
{{custom_keyword}} /
杨哲,蒲勇健.
单主多从博弈中中级社会Nash均衡的存在性与应用. 系统科学与数学, 2013, 33(7): 777-784. https://doi.org/10.12341/jssms12130
YANG Zhe, PU Yongjian.
THE EXISTENCE OF INTERMEDIATE SOCIAL NASH EQUILIBRIA FOR ONE-LEADER-MULTI-FOLLOWER GAMES AND ITS APPLICATION. Journal of Systems Science and Mathematical Sciences, 2013, 33(7): 777-784 https://doi.org/10.12341/jssms12130
中图分类号:
91A10
91A40
91A44
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}