基于RBF神经网络的超导风力发电系统变速控制研究

左姗,宋庆旺,王磊,宋永端

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (2) : 145-157.

PDF(5011 KB)
PDF(5011 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (2) : 145-157. DOI: 10.12341/jssms12258
论文

基于RBF神经网络的超导风力发电系统变速控制研究

    左姗1,宋庆旺1,王磊2,宋永端2
作者信息 +

VARIABLE SPEED CONTROL STUDY OF SCSG WIND TURBINE SYSTEM BASED ON RBF NEURAL NETWORK

    ZUO Shan1 , SONG Qingwang1 , WANGLei 2, SONG Yongduan2
Author information +
文章历史 +

摘要

超导同步发电机(SCSG)以其功率密度大,重量轻,体积小,寿命长的特点,已经被用来研究超大型海上风力发电机组.文章首先介绍了一种将高温超导材料应用于大型风力发电机组的技术,分析了高温超导发电机的结构和特点,基于FAST和Matlab/Simulink 软件平台搭建SCSG风力发电机组的数学模型和速度控制模块.其次针对SCSG 模型存在高阶,非线性时变的特性,在速度控制环中引入了基于Delta 学习规则的单神经元自适应PID控制算法,其中RBF网络用于控制参数的辨识整定.模拟实验结果表明,相对于传统PID控制,该算法可以使SCSG速度更好地跟踪风速,保持稳定的最佳叶尖速比和最大功率系数,从而实现最大风能利用.

Abstract

Superconducting synchronous generator (SCSG) has been used to develop large-scale offshore wind turbine because of its high energy density and the advantages in the weight and size. This paper firstly introduces a technology of high-temperature superconducting materials used in large-scale wind turbine, and analyze the structure and characteristics of high-temperature superconducting generator. Then taking into account the high-order, nonlinear, time-varying characteristics of SCSG model, a control algorithm of single neuron adaptive PID controller is introduced based on Delta learning regulation, in which the radial basis function (RBF) neural network is used to identify the undetermined portion. The paper applies the improved algorithm in the speed control of SCSG wind generation system. Simulation results show that compared to traditional PID control, SCSG speed with improved algorithm can better
rack the wind speed, maintain a more sable optimal tip speed ration and maximum power coefficient, for achieving the maximum wid energy utilization.

引用本文

导出引用
左姗 , 宋庆旺 , 王磊 , 宋永端. 基于RBF神经网络的超导风力发电系统变速控制研究. 系统科学与数学, 2014, 34(2): 145-157. https://doi.org/10.12341/jssms12258
ZUO Shan , SONG Qingwang , WANGLei , SONG Yongduan. VARIABLE SPEED CONTROL STUDY OF SCSG WIND TURBINE SYSTEM BASED ON RBF NEURAL NETWORK. Journal of Systems Science and Mathematical Sciences, 2014, 34(2): 145-157 https://doi.org/10.12341/jssms12258
中图分类号: 93C40   
PDF(5011 KB)

240

Accesses

0

Citation

Detail

段落导航
相关文章

/