状态饱和2-D离散系统的稳定性分析

陈东彦,于浍

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (2) : 171-178.

PDF(309 KB)
PDF(309 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (2) : 171-178. DOI: 10.12341/jssms12260
论文

状态饱和2-D离散系统的稳定性分析

    陈东彦,于浍
作者信息 +

STABILITY ANALYSIS OF 2-D DISCRETE SYSTEMS WITH STATE SATURATION

    CHEN Dongyan, YU Hui
Author information +
文章历史 +

摘要

研究由~Fornasini-Marchesini(简记F-M)第二模型描述的状态饱和~2-D~离散系统的渐近稳定性.定义参数~si~将系统表示成部分状态饱和~2-D~离散系统;
构造具有较少限制的矩阵~Q~并引入参数~β,利用~Lyapunov~方法给出了系统全局渐近稳定性的新的判别条件;设计了基于线性矩阵不等式的求解算法,
并通过数值算例验证了算法的有效性.

Abstract

In this paper, the globally asymptotical stability of 2-D discrete-time systems described by the Fornasini-Marchesini (F-M) second model is studied. By
defining the parameter si, the systems are expressed as 2-D discrete-time systems with partial state saturation. By constructing a matrix Q with fewer constraints and introducing a parameter , a new criterion of globally asymptotical stability is given by applying Lyapunov method. In order to achieve the stability discrimination, an algorithm based on LMIs is designed. In the end, a numerical example is given to show the effectiveness of the proposed algorithm.

关键词

  / 2-D~离散系统 / F-M~第二模型 / 状态饱和 / 渐近稳定性.

引用本文

导出引用
陈东彦,于浍. 状态饱和2-D离散系统的稳定性分析. 系统科学与数学, 2014, 34(2): 171-178. https://doi.org/10.12341/jssms12260
CHEN Dongyan, YU Hui. STABILITY ANALYSIS OF 2-D DISCRETE SYSTEMS WITH STATE SATURATION. Journal of Systems Science and Mathematical Sciences, 2014, 34(2): 171-178 https://doi.org/10.12341/jssms12260
中图分类号: 41A40    70K20   
PDF(309 KB)

244

Accesses

0

Citation

Detail

段落导航
相关文章

/