摘要
主要给出了-算子的一些性质:若是-算子, 则有谱的连续性; 若是-算子,则的近似点谱和联合近似点谱是相等的; 若, 是-算子,则, 是Weyl算子当且仅当是Weyl算子.
Abstract
In this paper, we give sme properties of ∗-A(n) operators. We prove that the spectrum is continuous on the class of all ∗-A(n) operators. And if T is a ∗-A(n) operator, then the approximate point spectrum and the joint approximate point spectrum of T are identical. Finally, we prove that if T , S are ∗-A(n) operators,
then T and S are Weyl if and only if TS is Weyl.
关键词
/
-算子 /
谱的连续性 /
Weyl算子.
{{custom_keyword}} /
左飞,申俊丽.
-算子的谱性质. 系统科学与数学, 2014, 34(3): 362-366. https://doi.org/10.12341/jssms12288
ZUO Fei, SHEN Junli.
THE SPECTRAL PROPERTIES OF -A(n) OPERATORS. Journal of Systems Science and Mathematical Sciences, 2014, 34(3): 362-366 https://doi.org/10.12341/jssms12288
中图分类号:
47A10
47B20
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}