具扰动项的L-R型迁移算子的谱分析

王胜华,贾善德,黄时祥

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (4) : 443-451.

PDF(308 KB)
PDF(308 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (4) : 443-451. DOI: 10.12341/jssms12312
论文

具扰动项的L-R型迁移算子的谱分析

    王胜华,贾善德,黄时祥
作者信息 +

SPECTRAL ANALYSIS OF TRANSPORT OPERATORS IN L-R MODEL WITH PERTURBATION TERM

    WANG Shenghua, JIA Shande, HUANG Shixiang
Author information +
文章历史 +

摘要

Lp(1p<+)空间上,研究了种群细胞增生中一类具扰动项非光滑边界条件的L-R模型,证明了这类模型相应的迁移算子生成半群的Dyson-phillips展式的9阶余项R9(t)L1空间上是弱紧和在Lp(1<p<+)空间上是紧的,从而获得了该迁移算子的谱在某右半平面上仅由有限个具有限代数重数的离散本征值组成及该迁移方程解的渐近行为等结果.

Abstract

This paper deals with the L-R model with perturbation term of cell pop-ulations with unsmooth boundary conditions in Lp space (1 ≤ p < +∞). It is proven
that the ninth-order remainder term R9(t) of the Dyson-Phillips expansion of cor-responding transport operators generates semigroup for this model which is weakly compact on L1 and is compact on Lp(1 < p < +∞), and that the spectrum of the transport operators only consist of finitely isolate eigenvalues with finite algebraic multiplicities in the right half plane. Finally, the asymptotic behavior of the transport equation solution is given.

关键词

具扰动项的L-R模型 / 非光滑边界条件 / 迁移算子 / 余项的紧性 / 谱分析.

引用本文

导出引用
王胜华,贾善德,黄时祥. 具扰动项的L-R型迁移算子的谱分析. 系统科学与数学, 2014, 34(4): 443-451. https://doi.org/10.12341/jssms12312
WANG Shenghua, JIA Shande, HUANG Shixiang. SPECTRAL ANALYSIS OF TRANSPORT OPERATORS IN L-R MODEL WITH PERTURBATION TERM. Journal of Systems Science and Mathematical Sciences, 2014, 34(4): 443-451 https://doi.org/10.12341/jssms12312
中图分类号: 47A10   
PDF(308 KB)

176

Accesses

0

Citation

Detail

段落导航
相关文章

/