一类~\bmn+1~次平面拟齐次向量场的全局性质

冯光庭,殷秀芝,凌中华,张兴安

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (4) : 475-487.

PDF(649 KB)
PDF(649 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (4) : 475-487. DOI: 10.12341/jssms12315
论文

一类~\bmn+1~次平面拟齐次向量场的全局性质

    冯光庭1,殷秀芝2,凌中华2,张兴安2
作者信息 +

THE GLOBAL PROPERTY OF A CLASS OF PLANAR QUASI-HOMOGENEOUS VECTOR FIELDS

    FENG Guangting1 , YIN Xiuzhi2 , LING Zhonghua2 ,  ZHANG Xing-an2
Author information +
文章历史 +

摘要

利用中心投影的思想证明了一类~n+1~次平面拟齐次向量场的几何性质仅依赖于它的诱导向量场.并根据其诱导向量场的性质证明了该向量场有10种不同拓扑结构的扇形不变区域,进而讨论了其全局拓扑结构,得到了该向量场当~n~为偶数时有~13~种不同的全局拓扑等价类,当~n~为奇数时有~12~种不同的全局拓扑等价类.

Abstract

In this paper, by using the idea of the central projection it is shown that the geometric property of a class of planar quasi-homogeneous  vector fields of degree n+1  depends on their induced vector fields.  By virtue of its induced vector field, it is proven that this vector field  has 10 types of sector invariant fields with different topological   classification. Furthermore, its global topological structure is  discussed and it is shown that there are 13 types of different topological classification when n  is even number and 12 types of different   topological classification when  n  is odd number.

关键词

拟齐次向量场 / 切向量场 / 不变直线 / 全局拓扑分类.

Key words

Quasi-homogeneous vector field, tangent vector field, invariant line,  / global topological classification.

引用本文

导出引用
冯光庭,殷秀芝,凌中华,张兴安. 一类~\bmn+1~次平面拟齐次向量场的全局性质. 系统科学与数学, 2014, 34(4): 475-487. https://doi.org/10.12341/jssms12315
FENG Guangting , YIN Xiuzhi , LING Zhonghua , ZHANG Xing-an. THE GLOBAL PROPERTY OF A CLASS OF PLANAR QUASI-HOMOGENEOUS VECTOR FIELDS. Journal of Systems Science and Mathematical Sciences, 2014, 34(4): 475-487 https://doi.org/10.12341/jssms12315
中图分类号: 34C05    58A05   
PDF(649 KB)

172

Accesses

0

Citation

Detail

段落导航
相关文章

/