一类三次系统的广义相伴系统的定性分析

蒋自国

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (7) : 888-895.

PDF(347 KB)
PDF(347 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (7) : 888-895. DOI: 10.12341/jssms12383
论文

一类三次系统的广义相伴系统的定性分析

    蒋自国
作者信息 +

QUALITATIVE ANALYSIS FOR A CLASS OF GENERALIZED ACCOMPANYING SYSTEM OF A CLASS OF CUBIC SYSTEM

    JIANG Ziguo
Author information +
文章历史 +

摘要

研究了一类三次多项式微分系统x˙=y+δx+lx2+mxy+bxy2+ax3,y˙=x 的广义相伴系统x˙=y+δx+lx2+mxy+bxy2+ax3,y˙=xφ(y), 对原点O 进行了中心-焦点判定. 利用旋转向量场的理论得出了系统不存在极限环的充分条件, 利用Hopf 分支问题的Lyapunov 第二方法得到了该系统极限环 存在性的若干充分条件, 最后利用Coppel的唯一性定理得到了极限环唯一性的充分条件.

Abstract

Studied a class of generalized accompanying system x˙ = −y +x+lx2 + mxy + bxy2 + ax3, y˙ = x'(y) of the cubic system x˙ = −y + x + lx2 + mxy + bxy2 + ax3, y˙ = x. The origin is the center or focus is judged. Using the theory of a rotating vector field, the sufficient conditions for no-existence of limit cycles are obtained. By using the second method of Lyapunov for Hopf bifurcation problem, some sufficient conditions for the existence of limit cycle of the system are obtained. By using the uniqueness theorem of Coppel for limit cycles, some sufficient conditions for the uniqueness of limit cycle are obtained.

关键词

广义相伴系统 / 奇点 / 极限环 / 存在性 / 唯一性.

Key words

Studied a class of generalized accompanying system x˙ = &minus / y +x+lx2 + mxy + bxy2 + ax3, y˙ = x'(y) of the cubic system x˙ = &minus

引用本文

导出引用
蒋自国. 一类三次系统的广义相伴系统的定性分析. 系统科学与数学, 2014, 34(7): 888-895. https://doi.org/10.12341/jssms12383
JIANG Ziguo. QUALITATIVE ANALYSIS FOR A CLASS OF GENERALIZED ACCOMPANYING SYSTEM OF A CLASS OF CUBIC SYSTEM. Journal of Systems Science and Mathematical Sciences, 2014, 34(7): 888-895 https://doi.org/10.12341/jssms12383
中图分类号: 34C05   
PDF(347 KB)

259

Accesses

0

Citation

Detail

段落导航
相关文章

/