有限期限上具有随机利率的最优投资消费模型

宋静静,毕秀春,张曙光

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (8) : 914-924.

PDF(371 KB)
PDF(371 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (8) : 914-924. DOI: 10.12341/jssms12387
论文

有限期限上具有随机利率的最优投资消费模型

    宋静静1,毕秀春2,张曙光2
作者信息 +

OPTIMAL INVESTMENT AND CONSUMPTION MODEL WITH STOCHASTIC INTEREST RATE ON A FINITE TIME HORIZON

    SONG Jingjing1,BI Xiuchun2 ,ZHANG Shuguang2
Author information +
文章历史 +

摘要

文章考虑有限期限上的最优投资消费问题. 风险资产服从几何布朗运动, 利率服从一个遍历的\ Markov 过程. 目标是累积消费和终值财富贴现的幂效用期望最大化. 利用动态规划原理推导出值函数所满足的\ HJB 方程, 并利用上下解方法证明了对应非线性抛物型偏微分方程终值问题解的存在唯一性, 最后证明了验证性定理.

Abstract

In this paper, we consider an optimal investment and consumption problem on a finite time horizon. The price of risky asset obeys a geometric Brownian motion, and interest rate varies according to an ergodic Markov process. The goal is to choose optimal investment and consumption policies to maximize the expected discounted power utilities of the accumulative consumption and the terminal wealth. The {\rm HJB} equation is derived using dynamic programming principle, and the existence and uniqueness of solution of the terminal value problem for the corresponding nonlinear parabolic partial differential equation are obtained using the sub-supersolution method, finally, the verification theorem is obtained.

关键词

随机利率 / 最优投资消费 / HJB 方程 / 上下解 / 幂效用.

引用本文

导出引用
宋静静 , 毕秀春 , 张曙光. 有限期限上具有随机利率的最优投资消费模型. 系统科学与数学, 2014, 34(8): 914-924. https://doi.org/10.12341/jssms12387
SONG Jingjing , BI Xiuchun , ZHANG Shuguang. OPTIMAL INVESTMENT AND CONSUMPTION MODEL WITH STOCHASTIC INTEREST RATE ON A FINITE TIME HORIZON. Journal of Systems Science and Mathematical Sciences, 2014, 34(8): 914-924 https://doi.org/10.12341/jssms12387
中图分类号: 91G10    35K15   
PDF(371 KB)

335

Accesses

0

Citation

Detail

段落导航
相关文章

/