博弈论中的矩阵方法

程代展,刘挺,王元华

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (11) : 1291-1305.

PDF(415 KB)
PDF(415 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (11) : 1291-1305. DOI: 10.12341/jssms12453
论文

博弈论中的矩阵方法

    程代展,刘挺,王元华
作者信息 +

MATRIX APPROACH TO GAME THEORY

    CHENG Daizhan1 , LIU Ting2 , WANG Yuanhua3
Author information +
文章历史 +

摘要

应用矩阵半张量积, 博弈论中的一些重要公式可转化为易于计算的矩阵形式. 文章介绍作者近期得到的一些计算公式. 主要包括: 1) 势博弈的检验与势函数的计算; 2) 合作博弈在一致博弈上的展开; 3) Shapley 值的计算. 它们不仅为数值计算提供了有力工具, 同时也为相关的理论研究带来极大的方便.

Abstract

Using semi-tensor product of matrices, some important formulas in game theory may be converted into their matrix forms, which are easily computable. In this paper some of such formulas obtained by us are introduced. The formulas include mainly the following: 1) The verification for potential game and the calculation of potential functions; 2) the expansion of cooperative games over the set of unanimity games; 3) the calculation of Shapley value of cooperative games. These formulas not only provide convenient tools for numerical calculations, but also become powerful tools for theoreticaresearch.

关键词

合作/非合作博弈 / 势博弈 / 一致博弈 /   / Shapley 值 / 矩阵半张量积.

引用本文

导出引用
程代展 , 刘挺 , 王元华. 博弈论中的矩阵方法. 系统科学与数学, 2014, 34(11): 1291-1305. https://doi.org/10.12341/jssms12453
CHENG Daizhan , LIU Ting , WANG Yuanhua. MATRIX APPROACH TO GAME THEORY. Journal of Systems Science and Mathematical Sciences, 2014, 34(11): 1291-1305 https://doi.org/10.12341/jssms12453
中图分类号: 91A06   
PDF(415 KB)

923

Accesses

0

Citation

Detail

段落导航
相关文章

/