基于模糊神经网络建模的RFID室内定位算法

陈增强,国峰,张青

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (12) : 1438-1450.

PDF(1037 KB)
PDF(1037 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (12) : 1438-1450. DOI: 10.12341/jssms12481
论文

基于模糊神经网络建模的RFID室内定位算法

    陈增强1,国峰1,张青2
作者信息 +

AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL

    CHEN Zengqiang1 , GUO Feng1 , ZHANG Qing2
Author information +
文章历史 +

摘要

将模糊神经网络FNN应用于基于RFID技术的室内定位系统IPS, 提出一种基于模糊神经网络的RFID室内定位算法,算法将参考标签数据作 为神经网络的训练样本,建立``标签接收信号强度与标签读写器间距离RSSI-DIST''的映射模 型,然后利用最小二乘解确定目标的位置坐标.同时,对比了传统BP 神经网络 和FNN网络在建模和定位中的性能.在仿真和硬件平台测试中,模糊神经网络都要 比BP 表现出更优异的性能,表明基于模糊神经网络的算法更适合于IPS 系统.

Abstract

The fuzzy neural network (FNN) was applied to indoor Positioning Sys- tem (IPS) base on RFID technology. A RFID indoor Location algorithm based on FNN is proposed, which uses the reference tag data as training samples for neural network and builds the mapping model of “The e-Tag received signal strength indi- cator and the distance between e-Tag and Reader” (RSSI-DIST). The least-squares solution is utilized to determine the position of target tag. Meanwhile, the perfor- mances in the modeling and positioning were compared between the traditional BP Neural Network and FNN. The Simulation and Hardware platform’s result prove that FNN shows superior performance than BP and the method based on FNN is more suitable for the IPS.

引用本文

导出引用
陈增强 , 国峰 , 张青. 基于模糊神经网络建模的RFID室内定位算法. 系统科学与数学, 2014, 34(12): 1438-1450. https://doi.org/10.12341/jssms12481
CHEN Zengqiang , GUO Feng , ZHANG Qing. AN RFID INDOOR LOCATION ALGORITHM BASED ON FUZZY NEURAL NETWORK MODEL. Journal of Systems Science and Mathematical Sciences, 2014, 34(12): 1438-1450 https://doi.org/10.12341/jssms12481
中图分类号: 03B52   
PDF(1037 KB)

313

Accesses

0

Citation

Detail

段落导航
相关文章

/