具有多干扰的非线性时变时滞关联系统的复合分层抗干扰控制

侯林林,宗广灯

系统科学与数学 ›› 2014, Vol. 34 ›› Issue (12) : 1595-1603.

PDF(378 KB)
PDF(378 KB)
系统科学与数学 ›› 2014, Vol. 34 ›› Issue (12) : 1595-1603. DOI: 10.12341/jssms12494
论文

具有多干扰的非线性时变时滞关联系统的复合分层抗干扰控制

    侯林林1 ,宗广灯2
作者信息 +

COMPOSITE HIERARCHICAL ANTI-DISTURBANCE CONTROL FOR NONLINEAR TIME-VARYING DELAY INTERCONNECTED SYSTEMS WITH MULTIPLE DISTURBANCES

    HOU Linlin1 , ZONG Guangdeng2
Author information +
文章历史 +

摘要

针对一类带有多干扰的非线性时变时滞关联系统, 考虑了复合抗干扰控制器设计问题. 复合抗干扰控制器的设计主要结合了基于干扰观测器的控制方法~(Disturbance observer based control, DOBC) 和~H 控制方法. 系统受到的干扰可以分为 两类: 第一类干扰由外部系统描述, 并且与控制输入在同一通道; 第二类干扰假定满足有界~H2 范数. 设计干扰观测器估计第一类干扰, 并利用干扰估计值进行前馈补偿; 利用~H 控制方法对第二类干扰 进行衰减. 利用~Lyapunov 函数理论分析了闭环系统的稳定性, 并以线性 矩阵不等式的形式给出了可解的时滞依赖条件. 最后, 利用数值仿真验证了 所提方法的有效性.

Abstract

In this paper, the problem of composite anti-disturbance controller design is considered for a class of nonlinear time-varying delay interconnected systems with multiple disturbances. The composite controller is designed combining disturbance observer based control method with H control scheme. The disturbances are divided into two parts. One part is described by exogenous systems, which imposes on system with control inputs in the same channel. The other part is assumed to be bounded H2 norm. A disturbance observer is designed to estimate the first case disturbances, and the disturbance estimation value is used for feedforward compensation, and H control method is employed to attenuate the second case disturbances. The stability analysis is developed by Lyapunov function theory. A solvable delay-dependent condition is presented in terms of linear matrix inequality (LMI). Finally, a numerical example is given to demonstrate the effectiveness of the proposed method.

关键词

关联系统 / 多干扰 / 时变时滞 / 基于干扰观测器的控制 / H 控制.

引用本文

导出引用
侯林林 , 宗广灯. 具有多干扰的非线性时变时滞关联系统的复合分层抗干扰控制. 系统科学与数学, 2014, 34(12): 1595-1603. https://doi.org/10.12341/jssms12494
HOU Linlin , ZONG Guangdeng. COMPOSITE HIERARCHICAL ANTI-DISTURBANCE CONTROL FOR NONLINEAR TIME-VARYING DELAY INTERCONNECTED SYSTEMS WITH MULTIPLE DISTURBANCES. Journal of Systems Science and Mathematical Sciences, 2014, 34(12): 1595-1603 https://doi.org/10.12341/jssms12494
中图分类号: 93A15    93C10   
PDF(378 KB)

Accesses

Citation

Detail

段落导航
相关文章

/