一类基于尺度结构的种群系统的最优收获

刘炎,何泽荣

系统科学与数学 ›› 2015, Vol. 35 ›› Issue (4) : 459-471.

PDF(384 KB)
PDF(384 KB)
系统科学与数学 ›› 2015, Vol. 35 ›› Issue (4) : 459-471. DOI: 10.12341/jssms12554
论文

一类基于尺度结构的种群系统的最优收获

    刘炎1,何泽荣2
作者信息 +

OPTIMAL HARVESTING FOR A POPULATION SYSTEM WITH BODY SIZE

    LIU Yan1 , HE Zerong2
Author information +
文章历史 +

摘要

分析一类食饵种群带有尺度结构的种群系统的最优收获问题. 利用不动点定理证明了状态系统及其共轭系统非负解的存在唯一性, 解对控制变量的连续依赖性. 应用切锥法锥技巧导出了最优性条件, 借助Ekeland变分原理讨论了最优收获策略的存在唯一性, 推广了年龄结构种群模型中的相应结论.

Abstract

This work is concerned with an optimal harvesting problem for a predator-prey model, in which the prey population is described by a first order partial differential equation (PDE) in a density function and the predator by an ordinary differential equation in total size. Existence and uniqueness of solutions to the state system and the dual system are proven via fixed point theorem. Necessary optimality conditions of first order are established by use of tangent-normal cones and dual system technique. The existence of a unique optimal control pair is derived by means of Ekeland's variational principle. The resulting conclusion extends some existing results involving age-dependent populations.

关键词

最优控制 / 尺度结构 / 切锥法锥 / Ekeland变分原理.

引用本文

导出引用
刘炎 , 何泽荣. 一类基于尺度结构的种群系统的最优收获. 系统科学与数学, 2015, 35(4): 459-471. https://doi.org/10.12341/jssms12554
LIU Yan , HE Zerong. OPTIMAL HARVESTING FOR A POPULATION SYSTEM WITH BODY SIZE. Journal of Systems Science and Mathematical Sciences, 2015, 35(4): 459-471 https://doi.org/10.12341/jssms12554
中图分类号: 92D25    49J20    65L70   
PDF(384 KB)

275

Accesses

0

Citation

Detail

段落导航
相关文章

/