一类具有两个时滞的捕食模型的稳定性与Hopf分支

贾建文,魏潇敏

系统科学与数学 ›› 2015, Vol. 35 ›› Issue (5) : 576-587.

PDF(574 KB)
PDF(574 KB)
系统科学与数学 ›› 2015, Vol. 35 ›› Issue (5) : 576-587. DOI: 10.12341/jssms12564
论文

一类具有两个时滞的捕食模型的稳定性与Hopf分支

    贾建文,魏潇敏
作者信息 +

ON THE STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY MODEL WITH TWO DELAYS

    JIA Jianwen, WEI Xiaomin
Author information +
文章历史 +

摘要

研究了一类具有两个时滞和Holling-III型功能性反应的捕食系统.首先通过对特征方程的分析得到系统平衡点的局部稳定的充分条件以及在其周围出现~Hopf分支的条件,其次,在以~τ1=τ2=τ~作为分支参数,利用规范型方法和中心流形定理, 得到确定周期解的分支方向,分支周期解的稳定性等显式算法. 最后通过数值模拟验证了所得结论的正确性.

Abstract

In this paper, a predator-prey system with Holling type-III functional response and two delays is investigated. By analyzing the characteristic equations, the local stability of each of feasible equilibria of the system is discussed and the existence of a Hopf bifurcation at the coexistence equilibrium is established. The delay τ is used as the bifurcation parameter, we show that Hopf bifurcations can occur as τ crosses some critical values. Applying the normal form theory and center manifold argument, we obtain explicit formulas to determine the direction of the Hopf bifurcations and the stability of the bifurcating periodic solutions. Finally, some numerical simulations are carried out to illustrate the main theoretical results.

关键词

时滞 / 稳定性 / 捕食系统 / Hopf分支.

引用本文

导出引用
贾建文 , 魏潇敏. 一类具有两个时滞的捕食模型的稳定性与Hopf分支. 系统科学与数学, 2015, 35(5): 576-587. https://doi.org/10.12341/jssms12564
JIA Jianwen , WEI Xiaomin. ON THE STABILITY AND HOPF BIFURCATION OF A PREDATOR-PREY MODEL WITH TWO DELAYS. Journal of Systems Science and Mathematical Sciences, 2015, 35(5): 576-587 https://doi.org/10.12341/jssms12564
中图分类号: 34K45    34C25    92D25   
PDF(574 KB)

274

Accesses

0

Citation

Detail

段落导航
相关文章

/