次最优跳频序列集的构造

蔡晗,陈媛,曾祥勇,彭松

系统科学与数学 ›› 2015, Vol. 35 ›› Issue (5) : 588-600.

PDF(378 KB)
PDF(378 KB)
系统科学与数学 ›› 2015, Vol. 35 ›› Issue (5) : 588-600. DOI: 10.12341/jssms12565
论文

次最优跳频序列集的构造

    蔡晗,陈媛,曾祥勇,彭松
作者信息 +

A NEW CONSTRUCTION OF SUBOPTIMAL FREQUENCY HOPPING SEQUENCE SETS

    CAI Han, CHEN Yuan ,ZENG Xiangyong ,PENG Song
Author information +
文章历史 +

摘要

分圆类和分圆数是数论和组合数学中的经典议题. 它们与差集, 序列设计, 以及编码理论存在着密切的关联. 而寻求和设计比较理想\,(最优及次最优)\,的跳频序列\,(集)\,则是研究跳频通信技术的重要课题. 文章基于广义分圆类提出一种次最优跳频序列集的构造, 这些序列集具有新的参数且序 列长度能为任意大于\,3\,的奇数.

Abstract

Cyclotomy and cyclotomic numbers are classic topics of number theory and combinatorics. They are closely related to difference sets, sequences and coding theory. To find optimal and suboptimal frequency hopping sequence sets is an important subject in the research of frequency hopping multiple-access systems. In this paper, based on a generalized cyclotomy, we propose a new construction of suboptimal frequency hopping sequence sets with respect to the Peng-Fan bound. Those frequency hopping sequence sets have parameters (v,f,e+1;v1e), where v=p1m1p2m2pkmk is an odd integer larger than 3, pi is prime for 1ik, e|(pi1) for 1ik and f=min{pi1e:1ik}. Some of the frequency hopping sequence sets proposed in this paper can have new parameters compared with the known frequency hopping sequence sets in the literature.

关键词

跳频序列 / 广义分圆类 / 广义分圆数 / Peng-Fan\ / 界.

引用本文

导出引用
蔡晗 , 陈媛 , 曾祥勇 , 彭松. 次最优跳频序列集的构造. 系统科学与数学, 2015, 35(5): 588-600. https://doi.org/10.12341/jssms12565
CAI Han , CHEN Yuan , ZENG Xiangyong , PENG Song. A NEW CONSTRUCTION OF SUBOPTIMAL FREQUENCY HOPPING SEQUENCE SETS. Journal of Systems Science and Mathematical Sciences, 2015, 35(5): 588-600 https://doi.org/10.12341/jssms12565
中图分类号: 94A55   
PDF(378 KB)

286

Accesses

0

Citation

Detail

段落导航
相关文章

/