结构矩阵秩亏的可信验证

李喆,刘琦

系统科学与数学 ›› 2015, Vol. 35 ›› Issue (11) : 1374-1382.

PDF(302 KB)
PDF(302 KB)
系统科学与数学 ›› 2015, Vol. 35 ›› Issue (11) : 1374-1382. DOI: 10.12341/jssms12664
论文

结构矩阵秩亏的可信验证

    李喆1,刘琦2
作者信息 +

THE CERTIFICATION OF THE STRUCTURE MATRIX WITH RANK DEFICIENCY

    LI Zhe1,LIU Qi2
Author information +
文章历史 +

摘要

利用区间算法, 研究结构矩阵秩亏的可信性验证. 给定具有特殊代数结构且数值秩为k的实矩阵A(\bmp), 给出算法输出具有相同代数结构的区间矩阵A(\bmp+\bmW), 其每一个位置的元素为矩阵A(\bmp)相应位置的元素的很小的区间摄动, 使得区间矩阵A(\bmp+\bmW) 中包含一具有相同代数结构且秩为k的实矩阵$A(\bm{p}+\widehat{\bm{w}}

Abstract

This paper mainly discusses the certification of the structure matrix with rank deficiency using interval algorithm. For a structure matrix A(\bmp) with numerical rank k, this paper gives an algorithm which outputs an interval matrix A(\bmp+\bmW) with the same algebraic structure such that A(\bmp+\bmW) contains a real matrix A(\bmp+\bmw^) with the same algebraic structure and rank k within certain error bounds. Specially, each element of A(\bmp+\bmW) is a small interval perturbation of the corresponding element of A(\bmp).

关键词

区间算法 / 结构矩阵 / 可信性验证 / INTLAB.

引用本文

导出引用
李喆 , 刘琦. 结构矩阵秩亏的可信验证. 系统科学与数学, 2015, 35(11): 1374-1382. https://doi.org/10.12341/jssms12664
LI Zhe , LIU Qi. THE CERTIFICATION OF THE STRUCTURE MATRIX WITH RANK DEFICIENCY. Journal of Systems Science and Mathematical Sciences, 2015, 35(11): 1374-1382 https://doi.org/10.12341/jssms12664
中图分类号: 65G20    65H10    65W25   
PDF(302 KB)

378

Accesses

0

Citation

Detail

段落导航
相关文章

/