极大加代数上形式多项式的带余除法

王彩璐,张子龙,陶跃钢,周颖

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (1) : 123-133.

PDF(362 KB)
PDF(362 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (1) : 123-133. DOI: 10.12341/jssms12720
论文

 极大加代数上形式多项式的带余除法

    王彩璐1,张子龙1,陶跃钢2,周颖2
作者信息 +

THE DIVISION ALGORITHM FOR FORMAL POLYNOMIALS IN MAX-PLUS ALGEBRA

    WANG Cailu1 , ZHANG Zilong1,TAO Yuegang2 ,ZHOU Ying2
Author information +
文章历史 +

摘要

研究极大加代数上形式多项式的带余除法. 引入形式多项式可除的概念, 给出可除的一些性质. 在此基础上, 研究二次凹多项式与次数小于~2~的多项式之间的可除关系, 给出两个多项式可除的一个充分必要条件, 商式和余式唯一的一个充分必要条件以及商式和余式的求法. 举例说明凹多项式之间的可除关系与多项式函数之间的可除关系的等价性. 利用这个带余除法可计算极大加代数上循环码的循环移位.

Abstract

The division algorithm of formal polynomials in max-plus algebra is investigated in this paper. We introduce the concept of divisible for formal polynomials and give some of its properties. On this basis, we consider the divisibility relationship between any quadratic concavified polynomial and any formal polynomials whose degree is less than 2. The necessary and sufficient condition of the quadratic concavified polynomial to be divisible by another formal polynomial is presented. We also give the necessary and sufficient condition of the quotient and remainder to be unique. In addition, a method to calculate the quotient and remainder which satisfies the division algorithm is introduced. Two numerical examples are used to illustrate that the divisibility of formal polynomials is equivalent to the divisibility of polynomial functions in max-plus algebra. Using this division algorithm, one may calculate the circular shift of the cycle code over max-plus algebra.

关键词

极大加代数 / 形式多项式 / 可除 / 凹多项式 / 带余除法 / 极大加码多项式.

引用本文

导出引用
王彩璐 , 张子龙 , 陶跃钢 , 周颖.  极大加代数上形式多项式的带余除法. 系统科学与数学, 2016, 36(1): 123-133. https://doi.org/10.12341/jssms12720
WANG Cailu , ZHANG Zilong , TAO Yuegang , ZHOU Ying. THE DIVISION ALGORITHM FOR FORMAL POLYNOMIALS IN MAX-PLUS ALGEBRA. Journal of Systems Science and Mathematical Sciences, 2016, 36(1): 123-133 https://doi.org/10.12341/jssms12720
中图分类号: 08A40    08A65    16Y60    93C10    94B05   
PDF(362 KB)

344

Accesses

0

Citation

Detail

段落导航
相关文章

/