
L\'evy噪声驱动的非对称耗散随机系统的Poincar\'e-型不等式和分部积分公式
POINCAR\'E-TYPE INEQUALITY AND INTEGRATION BY PARTS FORMULA FOR NON-SYMMETRICAL DISSIPATIVE STOCHASTIC SYSTEMS DRIVEN BY L\'EVY NOISE
研究了L\'evy噪声驱动的非对称耗散随机系统的mild解的存在唯一性以及不变测度的存在性, 随后得到了关于不变测度的Poincar\'e-型不等式和分部积分公式.
In this paper, we consider the non-symmetrical dissipative stochastic systems driven by L\'evy noise. We prove the existence and uniqueness of the mild solution and the existence of the invariant probability measure, and the Poincar\'e-type inequality and integration by parts formula with respect to the invariant probability measure.
Poincar\'e-型不等式 / 分部积分公式 / L\'evy 噪声 / 不变测度. {{custom_keyword}} /
/
〈 |
|
〉 |