基于K-拟算术运算诱导的Kp-积分模意义下分片线性函数的逼近

陶玉杰,王宏志,王贵君

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (2) : 267.

PDF(528 KB)
PDF(528 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (2) : 267. DOI: 10.12341/jssms12732
论文

基于K-拟算术运算诱导的Kp-积分模意义下分片线性函数的逼近

    陶玉杰1,王宏志1,王贵君2
作者信息 +

APPROXIMATION OF PIECEWISE LINEAR FUNCTION IN THE SENSE OF Kp-INTEGRAL NORM INDUCED BY K-QUASI-ARITHMETIC OPERATIONS

    TAO Yujie 1,WANG Hongzhi1 ,WANG Guijun2
Author information +
文章历史 +

摘要

积分模是刻画一类可积函数空间的一个度量,分片线性函数是连通模糊系统和被逼近函数关系的桥梁, 二者是研究广义模糊系统逼近性问题的两个重要工具.首先通过拓广K-拟算术运算重新定义了Kp-积分模, 并依据积分转换定理证明该积分模关于拟加运算构成一个度量.其次,在Kp-积分模意义下获得了分片线性函数可按任意精度逼近一类μ^p-可积函数.

Abstract

Integral norm is a metric to describe a class of integrable function space, piecewise linear function is a bridge to connect relationship between fuzzy system and approximation function. They are two important tools to study the approximation problem of generalized fuzzy system. Firstly, the Kp-integral norm is defined by extending the quasi-subtraction operator, and we proved that the Kp-integral norm is a metric about quasi-addition operator by the integral transformation theorem. Secondly, it is obtained that the piecewise linear functions can approximate a kind of μ^p-integrable functions to arbitrary accuracy with respect to the Kp-integral norm.

关键词

K-拟算术运算 / μ^p-可积函数 / Kp-积分模 / 分片线性函数 / 逼近性.

引用本文

导出引用
陶玉杰 , 王宏志 , 王贵君. 基于K-拟算术运算诱导的Kp-积分模意义下分片线性函数的逼近. 系统科学与数学, 2016, 36(2): 267https://doi.org/10.12341/jssms12732
TAO Yujie , WANG Hongzhi , WANG Guijun. APPROXIMATION OF PIECEWISE LINEAR FUNCTION IN THE SENSE OF Kp-INTEGRAL NORM INDUCED BY K-QUASI-ARITHMETIC OPERATIONS. Journal of Systems Science and Mathematical Sciences, 2016, 36(2): 267 https://doi.org/10.12341/jssms12732
中图分类号: 26B35    41A45   
PDF(528 KB)

275

Accesses

0

Citation

Detail

段落导航
相关文章

/