有界Petri网的可逆性和活性的STP判别方法

韩晓光,陈增强,刘忠信,张青

系统科学与数学 ›› 2016, Vol. 36 ›› Issue (3) : 361-370.

PDF(398 KB)
PDF(398 KB)
系统科学与数学 ›› 2016, Vol. 36 ›› Issue (3) : 361-370. DOI: 10.12341/jssms12739
论文

有界Petri网的可逆性和活性的STP判别方法

    韩晓光1,陈增强2,刘忠信3,张青4
作者信息 +

STP-BASED JUDGMENT METHOD OF REVERSIBILITY AND LIVENESS OF BOUNDED PETRI NETS

    HAN Xiaoguang 1, CHEN Zengqiang2 , LIU Zhongxin3 , ZHANG Qing4
Author information +
文章历史 +

摘要

基于矩阵半张量积(the semi-tensor product, STP)方法研究了有界Petri网系统的可逆性和活性问题. 首先, 利用先前所建立的有界Petri网系统的状态演化方程, 分别给出了有界Petri网系统的可逆性和活性判别的充要条件. 文章的结果是基于矩阵形式的, 利用Matlab的STP工具箱, 可将Petri网系统的可逆性和活性判别问题转化为简单直接的矩阵计算问题. 所提出的方法不仅形式简单、计算方便, 而且易于计算机实现. 其次, 两个实例说明了文章所提出方法的可行性和有效性.

Abstract

In this paper, we investigate the problems of reversibility and liveness of bounded Petri net systems (BPNSs) by using the semi-tensor product (STP) of matrices. First, several necessary and sufficient conditions for the reversibility and liveness of BPNSs are respectively obtained by using the state evolution equation of BPNSs. The new results, in this paper, are based on the matrix form, thus the problems of verifying reversibility and liveness of BPNSs are expressed into the matrix computation which are very simple and straightforward work with the help of Matlab toolbox of STP. The main advantage of the proposed method not only is that its form is a very simple and easy to calculate, but also is that it is a very convenient to implementation on a computer. Second, two examples are presented to illustrate the theoretical results in this paper and show that the new results are very effective in investigating the problems of the reversibility and liveness in BPNSs.

关键词

Petri网 / 状态演化方程 / 可逆性 / 活性 / 半张量积.

引用本文

导出引用
韩晓光 , 陈增强 , 刘忠信 , 张青. 有界Petri网的可逆性和活性的STP判别方法. 系统科学与数学, 2016, 36(3): 361-370. https://doi.org/10.12341/jssms12739
HAN Xiaoguang , CHEN Zengqiang , LIU Zhongxin , ZHANG Qing. STP-BASED JUDGMENT METHOD OF REVERSIBILITY AND LIVENESS OF BOUNDED PETRI NETS. Journal of Systems Science and Mathematical Sciences, 2016, 36(3): 361-370 https://doi.org/10.12341/jssms12739
中图分类号: 93C65    37N35   
PDF(398 KB)

382

Accesses

0

Citation

Detail

段落导航
相关文章

/